Crossref journal-article
American Society for Cell Biology (ASCB)
Molecular Biology of the Cell (1076)
Abstract

Spatially modulated illumination fluorescence microscopy can in theory measure the sizes of objects with a diameter ranging between 10 and 200 nm and has allowed accurate size measurement of subresolution fluorescent beads (∼40–100 nm). Biological structures in this size range have so far been measured by electron microscopy. Here, we have labeled sites containing the active, hyperphosphorylated form of RNA polymerase II in the nucleus of HeLa cells by using the antibody H5. The spatially modulated illumination-microscope was compared with confocal laser scanning and electron microscopes and found to be suitable for measuring the size of cellular nanostructures in a biological setting. The hyperphosphorylated form of polymerase II was found in structures with a diameter of ∼70 nm, well below the 200-nm resolution limit of standard fluorescence microscopes.

Bibliography

Martin, S., Failla, A. V., Spöri, U., Cremer, C., & Pombo, A. (2004). Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy. Molecular Biology of the Cell, 15(5), 2449–2455.

Authors 5
  1. Sonya Martin (first)
  2. Antonio Virgilio Failla (additional)
  3. Udo Spöri (additional)
  4. Christoph Cremer (additional)
  5. Ana Pombo (additional)
References 25 Referenced 47
  1. Albrecht, B., Failla, A.V., Schweitzer, A., and Cremer, C. (2002). Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range.Appl. Opt.41, 80–87. (10.1364/AO.41.000080)
  2. Bailey, B., Farkas, D.L., Taylor, D.L., and Lanni, F. (1993). Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation.Nature366, 44–48. (10.1038/366044a0)
  3. Bregman, D.B., Du, L., Van Der Zee, S., and Warren, S.L. (1995). Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains.J. Cell Biol.129, 287–298. (10.1083/jcb.129.2.287)
  4. Egner, A., Jakobs, S., and Hell, S.W. (2002). Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast.Proc. Natl. Acad. Sci. USA99, 3370–3375. (10.1073/pnas.052545099)
  5. Failla, A.V., Cavallo, A., and Cremer, C. (2002a). Subwavelength size determination by spatially modulated illumination virtual microscopy.Appl. Opt.41, 6651–6659. (10.1364/AO.41.006651)
  6. Failla, A.V., Spöri, U., Albrecht, B., Kroll, A., and Cremer, C. (2002b). Nanosizing of fluorescent objects by spatially modulated illumination microscopy.Appl. Opt.41, 7275–7283. (10.1364/AO.41.007275)
  7. Fay, F.S., Taneja, K.L., Shenoy, S., Lifshitz, L., and Singer, R.H. (1997). Quantitative digital analysis of diffuse and concentrated nuclear distributions of nascent transcripts, SC35 and poly(A).Exp. Cell Res.231, 27–37. (10.1006/excr.1996.3460)
  8. Grande, M.A., van der Kraan, I., de Jong, L., and van Driel, R. (1997). Nuclear distribution of transcription factors in relation to sites of transcription and RNA polymerase II.J. Cell Sci.110, 1781–1791. (10.1242/jcs.110.15.1781)
  9. Gustafsson, M.G. (1999). Extended resolution fluorescence microscopy.Curr. Opin. Struct. Biol.9, 627–634. (10.1016/S0959-440X(99)00016-0)
  10. Iborra, F.J., and Cook, P.R. (1998). The size of sites containing SR proteins in human nuclei: problems associated with characterizing small structures by immunogold labelling.J. Histochem. Cytochem.46, 985–992. (10.1177/002215549804600901)
  11. Iborra, F.J., Pombo, A., Jackson, D.A., and Cook, P.R. (1996). Active RNA polymerases are localized within discrete transcription “factories” in human nuclei.J. Cell Sci.109, 1427–1436. (10.1242/jcs.109.6.1427)
  12. Jackson, D.A., Hassan, A.B., Errington, R.J., and Cook, P.R. (1993). Visualization of focal sites of transcription within human nuclei.EMBO J.12, 1059–1065. (10.1002/j.1460-2075.1993.tb05747.x)
  13. 10.1091/mbc.9.6.1523
  14. Komarnitsky, P., Cho, E.J., and Buratowski, S. (2000). Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription.Genes Dev.14, 2452–2460. (10.1101/gad.824700)
  15. Pombo, A., Hollinshead, M., and Cook, P.R. (1999a). Bridging the resolution gap: Imaging the same transcription factories in cryosections by light and electron microscopy.J. Histochem. Cytochem.47, 471–480. (10.1177/002215549904700405)
  16. Pombo, A., Jackson, D.A., Hollinshead, M., Wang, Z., Roeder, R.G., and Cook, P.R. (1999b). Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III.EMBO J.18, 2241–2253. (10.1093/emboj/18.8.2241)
  17. Pombo, A., Jackson, D.A., Iborra, F., Hollinshead, M., Kimura, H., Sugaya, K., and Cook, P.R. (2000). Transcription factories. Proceedings of the 12th European Congress on elution microscopy, VolI,Biological Sciences, B461–B464.
  18. Schneider, B., Upmann, I., Kirsten, I., Bradl, J., Hausmann, M., and Cremer, C. (1999). A dual-laser, spatially modulated illumination fluorescence microscope.Microsc. Anal.57, 5–7.
  19. Tokuyasu, K.T. (1973). A technique for ultracryotomy of cell suspensions and tissues.J. Cell Biol.57, 551–565. (10.1083/jcb.57.2.551)
  20. Wansink, D.G., Schul, W., van der Kraan, I., van Steensel, B., van Driel, R., and de Jong, L. (1993). Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus.J. Cell Biol.122, 283–293. (10.1083/jcb.122.2.283)
  21. Wansink, D.G., Sibon, O.C., Cremers, F.F., van Driel, R., and de Jong, L. (1996). Ultrastructural localization of active genes in nuclei of A431 cells.J. Cell Biochem.62, 10–18. (10.1002/(SICI)1097-4644(199607)62:1<10::AID-JCB2>3.0.CO;2-4)
  22. Weibel, E.R. (1979).Stereological Methods, Vol.1: Practical Methods for Biological Morphometry, London: Academic Press, 162–203.
  23. Weibel, E.R. (1980).Stereological Methods, Vol.2: Theoretical Foundations, London: Academic Press, 175–214.
  24. Williams, M.A. (1977). Quantitative methods in biology. In:Practical Methods in Electron Microscopy, Vol.6, ed. A.M. Glauert, Amsterdam: Elsevier North-Holland Biomedical Press, 5–84.
  25. Zeng, C., Kim, E., Warren, S.L., and Berget, S.M. (1997). Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity.EMBO J.16, 1401–1412. (10.1093/emboj/16.6.1401)
Dates
Type When
Created 21 years, 5 months ago (March 15, 2004, 8:45 p.m.)
Deposited 4 years, 2 months ago (June 14, 2021, 11:42 p.m.)
Indexed 1 year, 2 months ago (June 18, 2024, 6:36 p.m.)
Issued 21 years, 4 months ago (May 1, 2004)
Published 21 years, 4 months ago (May 1, 2004)
Published Print 21 years, 4 months ago (May 1, 2004)
Funders 0

None

@article{Martin_2004, title={Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy}, volume={15}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e04-01-0045}, DOI={10.1091/mbc.e04-01-0045}, number={5}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Martin, Sonya and Failla, Antonio Virgilio and Spöri, Udo and Cremer, Christoph and Pombo, Ana}, year={2004}, month=may, pages={2449–2455} }