Crossref journal-article
American Society for Cell Biology (ASCB)
Molecular Biology of the Cell (1076)
Abstract

Cystic fibrosis is the most widespread hereditary disease among the white population caused by different mutations of the apical membrane ATP-binding cassette transporter cystic fibrosis transmembrane conductance regulator (CFTR). Its most common mutation, ΔF508, leads to nearly complete degradation via endoplasmic reticulum-associated degradation (ERAD). Elucidation of the quality control and degradation mechanisms might give rise to new therapeutic approaches to cure this disease. In the yeast Saccharomyces cerevisiae, a variety of components of the protein quality control and degradation system have been identified. Nearly all of these components share homology with mammalian counterparts. We therefore used yeast mutants defective in the ERAD system to identify new components that are involved in human CFTR quality control and degradation. We show the role of the lectin Htm1p in the degradation process of CFTR. Complementation of the HTM1 deficiency in yeast cells by the mammalian orthologue EDEM underlines the necessity of this lectin for CFTR degradation and highlights the similarity of quality control and ERAD in yeast and mammals. Furthermore, degradation of CFTR requires the ubiquitin protein ligases Der3p/Hrd1p and Doa10p as well as the cytosolic trimeric Cdc48p-Ufd1p-Npl4p complex. These proteins also were found to be necessary for ERAD of a mutated yeast “relative” of CFTR, Pdr5*p.

Bibliography

Gnann, A., Riordan, J. R., & Wolf, D. H. (2004). Cystic Fibrosis Transmembrane Conductance Regulator Degradation Depends on the Lectins Htm1p/EDEM and the Cdc48 Protein Complex in Yeast. Molecular Biology of the Cell, 15(9), 4125–4135.

Authors 3
  1. Andreas Gnann (first)
  2. John R. Riordan (additional)
  3. Dieter H. Wolf (additional)
References 72 Referenced 85
  1. Ausubel, F.M., Kingston, R.E., Seidman, F.G., Struhl, K., Moore, D.D., Brent, R., and Smith, F.A. (1992).Current Protocols in Molecular Biology, New York: Greene.
  2. Balzi, E., Wang, M., Leterme, S., Van Dyck, L., and Goffeau, A. (1994). PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1*.J. Biol. Chem.269, 2206-2214. (10.1016/S0021-9258(17)42155-7)
  3. 10.1091/mbc.12.12.4114
  4. Braun, S., Matuschewski, A., Rape, M., Thoms, S., and Jentsch, S. (2002). Role of the ubiquitin-selective CDC48 (UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates.EMBO J.21, 615-621. (10.1093/emboj/21.4.615)
  5. Bebök, Z., Mazzochi, C., King, S.A., Hong, J.S., and Sorscher, E.J. (1998). The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.J. Biol. Chem.273, 29873-29878. (10.1074/jbc.273.45.29873)
  6. Bissinger, P.H., and Kuchler, K. (1994). Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product.J. Biol. Chem.269, 4180-4186. (10.1016/S0021-9258(17)41760-1)
  7. 10.1091/mbc.9.1.209
  8. Carvajal, E., van den Hazel, H.B., Cybularz-Kolaczkowska, A., Balzi, E., and Goffeau, A. (1997). Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes.Mol. Gen. Genet.256, 406-415. (10.1007/s004380050584)
  9. Chen, E.Y., Bartlett, M.C., and Clarke, D.M. (2000). Cystic fibrosis transmembrane conductance regulator has an altered structure when its maturation is inhibited.Biochemistry39, 3797-3803. (10.1021/bi992620m)
  10. Chevalier, M.S., and Johnson, D.C. (2003). Human cytomegalovirus US3 chimeras containing US2 cytosolic residues acquire major histocompatibility class I and II protein degradation properties.J. Virol.77, 4731-4738. (10.1128/JVI.77.8.4731-4738.2003)
  11. Chiang, H.L., and Schekman, R. (1991). Regulated import and degradation of a cytosolic protein in the yeast vacuole.Nature350, 313-318. (10.1038/350313a0)
  12. Dalemans, W.et al. (1991). Altered chloride ion channel kinetics associated with the Δ F508 cystic fibrosis mutation.Nature354, 526-528. (10.1038/354526a0)
  13. Denning, G.M., Anderson, M.P., Amara, J.F., Marshall, J., Smith, A.E., and Welsh, M.J. (1992). Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive.Nature358, 761-764. (10.1038/358761a0)
  14. 10.1091/mbc.9.2.523
  15. Ellgaard, L., and Helenius, A. (2003). Quality control in the endoplasmic reticulum.Nat. Rev. Mol. Cell. Biol.4, 181-191. (10.1038/nrm1052)
  16. Fang, S., Ferrone, M., Yang, C., Jensen, J.P., Tiwari, S., and Weissman, A.M. (2001). The tumor autocrine motility factor receptor, gp78, is an ubiquitin protein ligase implicated in the degradation from the endoplasmic reticulum.Proc. Natl. Acad. Sci. USA98, 14422-14427. (10.1073/pnas.251401598)
  17. Fröhlich, K.U., Fries, H.W., Rudiger, M., Erdmann, R., Botstein, D., and Mecke, D. (1991). Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression.J. Cell Biol.114, 443-453. (10.1083/jcb.114.3.443)
  18. Glick, B.S. (2002). The secretory pathway. In:Protein Targeting, Transport and Translocation, ed. R.E. Dalbey and G. and von Heijne, London: Academic Press, 358-376. (10.1016/B978-012200731-6.50017-3)
  19. Guthrie, C., and Fink, G.R. (1991)Guide to Yeast Genetics and Molecular Biology, Vol.194, New York: Academic Press.
  20. Haigh, N.G. and Johnson, A.E. (2002) Protein sorting at the endoplasmic reticulum. In:Protein Targeting, Transport and Translocation, ed. R.E. Dalbey and G. von Heijne, London: Academic Press, 74-106. (10.1016/B978-012200731-6.50007-0)
  21. Helenius, A., and Aebi, M. (2001). Intracellular functions of N-linked glycans.Science291, 2364-2369. (10.1126/science.291.5512.2364)
  22. Hiller, M.M., Finger, A., Schweiger, M., and Wolf, D.H. (1996). ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway.Science273, 1725-1728. (10.1126/science.273.5282.1725)
  23. Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L.O., Herscovics, A., and Nagata, K. (2001). A novel ER α-mannosidase-like protein accelerates ER-associated degradation.EMBO Rep.2, 415-422. (10.1093/embo-reports/kve084)
  24. Jakob, C.A., Bodmer, D., Spirig, U., Bättig, P., Marcil, A., Dignard, D., Bergeron, J.J.M., Thomas, D.Y., and Aebi, M. (2001). Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast.EMBO Rep.2, 423-430. (10.1093/embo-reports/kve089)
  25. Jarosch, E., Taxis, C., Volkwein, C., Bordallo, J., Finley, D., Wolf, D.H., and Sommer, T. (2002). Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48.Nat. Cell Biol.4, 134-138. (10.1038/ncb746)
  26. Jensen, T.J., Loo, M.A., Pind, S., Williams, D.B., Goldberg, A.L., and Riordan, J.R. (1995). Multiple proteolytic systems, including the proteasome, contribute to CFTR processing.Cell83, 129-135. (10.1016/0092-8674(95)90241-4)
  27. Johnston, J.A., Ward, C.L., and Kopito, R.R. (1998). Aggresomes: a cellular response to misfolded proteins.J. Cell Biol.143, 1883-1898. (10.1083/jcb.143.7.1883)
  28. Kartner, N.et al. (1991). Expression of the cystic fibrosis gene in non-epithelial invertebrate cells produces a regulated anion conductance.Cell64, 681-691. (10.1016/0092-8674(91)90498-N)
  29. Kerem, B.S., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., and Tsui, L.C. (1989). Identification of the cystic fibrosis gene, gene analysis.Science245, 1073-1080. (10.1126/science.2570460)
  30. Kiser, G.L., Gentzsch, M., Kloser, A.K., Balzi, E., Wolf, D.H., Goffeau, A., and Riordan, J.R. (2001). Expression and degradation of the cystic fibrosis transmembrane conductance regulator inSaccharomyces cerevisiae.Arch. Biochem. Biophys.390, 195-205. (10.1006/abbi.2001.2385)
  31. Knop, M., Hauser, N., and Wolf, D.H. (1996). N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast.Yeast12, 1229-1238. (10.1002/(SICI)1097-0061(19960930)12:12<1229::AID-YEA15>3.0.CO;2-H)
  32. Kostova, Z. and Wolf, D.H. (2002) Protein quality control in the export pathway, the endoplasmic reticulum and its cytoplasmic proteasome connection. In:Protein Targeting, Transport and Translocation, ed. R.E. Dalbey and G. von Heijne, London: Academic Press, 180-213. (10.1016/B978-012200731-6.50011-2)
  33. Kostova, Z., and Wolf, D.H. (2003). For whom the bell tolls, protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection.EMBO J.22, 2309-2317. (10.1093/emboj/cdg227)
  34. Lashkari, D.A., DeRisi, J.L. McCusker, J.H., Namath, A.F., Gentile, C., Hwang, S.Y., Brown, P.O., and Davis, R.W. (1997). Yeast microarrays for genome wide parallel genetic and gene expression analysis.Proc. Natl. Acad. Sci. USA94, 13057-13062. (10.1073/pnas.94.24.13057)
  35. Lenk, U., Yu, H., Walter, J., Gelman, M.S., Hartmann, E., Kopito, R.R., and Sommer, T. (2002). A role for mammalian Ubc6 homologues in ER-associated protein degradation.J. Cell Sci.115, 3007-3014. (10.1242/jcs.115.14.3007)
  36. Longtine, M.S., McKenzie, A., III, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification inSaccharomyces cerevisiae.Yeast14, 953-961. (10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U)
  37. Loo, M.A., Jensen, T.J., Cui, L., Hou, Y., Chang, X.B., and Riordan, J.R. (1998). Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.EMBO J.17, 6879-6887. (10.1093/emboj/17.23.6879)
  38. Mahé, Y., Lemoine, Y., and Kuchler, K. (1996). The ATP binding cassette transporters Pdr5 and Snq2 ofSaccharomyces cerevisiaecan mediate transport of steroids in vivo.J. Biol. Chem.271, 25167-25172. (10.1074/jbc.271.41.25167)
  39. Mayer, T.U., Braun, T., and Jentsch, S. (1998). Role of the proteasome in membrane extraction of a short-lived ER transmembrane protein.EMBO J.17, 3251-3257. (10.1093/emboj/17.12.3251)
  40. Meacham, G.C., Lu, Z., King, S., Sorscher, E., Tousson, A., and Cyr, D.M. (1999). The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis.EMBO J.18, 1492-1505. (10.1093/emboj/18.6.1492)
  41. Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M., and Cyr, D.M. (2001). The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.Nat. Cell Biol.3, 100-105. (10.1038/35050509)
  42. Molinari, M., Calanca, V., Galli, C., Lucca, P., and Paganetti, P. (2003). Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle.Science299, 1397-1400. (10.1126/science.1079474)
  43. Mumberg, D., Müller, R., and Funk, M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds.Gene156, 119-122. (10.1016/0378-1119(95)00037-7)
  44. Oda, Y., Hosokawa, N., Wada, I., and Nagata, K. (2003). EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin.Science299, 1394-1397. (10.1126/science.1079181)
  45. Palmer, A., Rivett, A.J., Thomson, S., Hendil, K.B., Butcher, G.W., Fuertes, G., and Knecht, E. (1996). Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol.Biochem. J.316, 401-407. (10.1042/bj3160401)
  46. Pind, S., Riordan, J.R., and Williams, D.B. (1994). Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator.J. Biol. Chem.269, 12784-12788. (10.1016/S0021-9258(18)99944-8)
  47. Plemper, R.K., Egner, R., Kuchler, K., and Wolf, D.H. (1998). Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome.J. Biol. Chem.273, 32848-32856. (10.1074/jbc.273.49.32848)
  48. Plemper, R.K., Bordallo, J., Deak, P.M., Taxis, C., Hitt, R., and Wolf, D.H. (1999). Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation.J. Cell Sci.112, 4123-4134. (10.1242/jcs.112.22.4123)
  49. Rabinovich, E., Kerem, A., Fröhlich, K.U., Diamant, N., and Bar-Nun, S. (2002). AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation.Mol. Cell. Biol.22, 626-634. (10.1128/MCB.22.2.626-634.2002)
  50. Riordan, J.R.et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.Science245, 1066-1073. (10.1126/science.2475911)
  51. Rivett, A.J., Palmer, A., and Knecht, E. (1992). Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells.J. Histochem. Cytochem.40, 1165-1172. (10.1177/40.8.1619280)
  52. Rose, M.D., Winston, F., and Hieter, P. (1990).Methods in Yeast Genetics, a Laboratory Course Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  53. Rubenstein, R.C., and Zeitlin, P.L. (2000). Sodium 4-phenylbutyrate down-regulates Hsc70, implications for intracellular trafficking of DeltaF508-CFTR.Am. J. Physiol.278, C259-C267.
  54. Rutishauser, J., and Spiess, M. (2002). Endoplasmic reticulum storage diseases,Swiss Med. Wkly.132, 211-222.
  55. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989).Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  56. Sato, S., Ward, C.L., Krouse, M.E., Wine, J.J., and Kopito, R.R. (1996). Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation.J. Biol. Chem.271, 635-638. (10.1074/jbc.271.2.635)
  57. Sikorski, R.S., and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA inSaccharomyces cerevisiae.Genetics122, 19-27. (10.1093/genetics/122.1.19)
  58. Soni, R., Carmichael, J.P., and Murray, J.A.H. (1993). Parameters affecting lithium acetate-mediated transformation ofSaccharomyces cerevisiaeand development of a rapid and simplified procedure.Curr. Genet.24, 455-459. (10.1007/BF00351857)
  59. Swanson, R., Locher, M., and Hochstrasser, M. (2001). A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα 2 repressor degradation.Genes Dev.15, 2660-2674. (10.1101/gad.933301)
  60. Taxis, C., Hitt, R., Park, S.H., Deak, P.M., Kostova, Z., and Wolf, D.H. (2003). Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD.J. Biol. Chem.278, 35903-35913. (10.1074/jbc.M301080200)
  61. Tiwari, S., and Weissman, A.M. (2001). Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits. Involvement of ER-associated ubiquitin-conjugating enzymes (E2s).J. Biol. Chem.276, 16193-16200. (10.1074/jbc.M007640200)
  62. Wach, A., Brachat, A., Pöhlmann, R., and Philippsen, P. (1994). New heterologous modules for classical or PCR-based gene disruption inSaccharomyces cerevisiae.Yeast10, 1793-1808. (10.1002/yea.320101310)
  63. Ward, C.L., and Kopito, R.R. (1994). Intracellular turnover of cystic fibrosis transmembrane conductance regulator.J. Biol. Chem.269, 25710-25718. (10.1016/S0021-9258(18)47306-1)
  64. Ward, C.L., Omura, S., and Kopito, R.R. (1995). Degradation of CFTR by the ubiquitin-proteasome pathway.Cell83, 121-127. (10.1016/0092-8674(95)90240-6)
  65. Wiertz, E.J., Tortorella, D., Bogyo, M., Yu, J., Mothes, W., Jones, T.R., Rapoport, T.A., Ploegh, H.L. (1996). Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction.Nature384, 432-438. (10.1038/384432a0)
  66. Wiertz, E.J., Jones, T.R., Sun, L., Bogyo, M., Geuze, H.J., Ploegh, H.L. (1996). The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol.Cell84, 769-779. (10.1016/S0092-8674(00)81054-5)
  67. Wigley, W.C., Fabunmi, R.P., Lee, M.G., Marino, C.R., Muallem, S., DeM-artino, G.N., and Thomas, P.J. (1999). Dynamic association of proteasomal machinery with the centrosome.J. Cell Biol.145, 481-490. (10.1083/jcb.145.3.481)
  68. 10.1091/mbc.11.5.1697
  69. Yang, Y., Janich, S., Cohn, J.A., and Wilson, J.M. (1993). The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment.Proc. Natl. Acad. Sci. USA90, 9480-9484. (10.1073/pnas.90.20.9480)
  70. Ye, Y., Meyer, H.H., and Rapoport, T.A. (2001). The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol.Nature414, 652-656. (10.1038/414652a)
  71. Yoshida, Y.et al. (2002). E3 ubiquitin ligase that recognizes sugar chains.Nature418, 438-442. (10.1038/nature00890)
  72. 10.1091/mbc.12.5.1303
Dates
Type When
Created 21 years, 2 months ago (June 23, 2004, 8:19 p.m.)
Deposited 4 years, 2 months ago (June 23, 2021, 2:40 p.m.)
Indexed 1 year, 1 month ago (July 22, 2024, 1:14 a.m.)
Issued 21 years ago (Sept. 1, 2004)
Published 21 years ago (Sept. 1, 2004)
Published Print 21 years ago (Sept. 1, 2004)
Funders 0

None

@article{Gnann_2004, title={Cystic Fibrosis Transmembrane Conductance Regulator Degradation Depends on the Lectins Htm1p/EDEM and the Cdc48 Protein Complex in Yeast}, volume={15}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e04-01-0024}, DOI={10.1091/mbc.e04-01-0024}, number={9}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Gnann, Andreas and Riordan, John R. and Wolf, Dieter H.}, year={2004}, month=sep, pages={4125–4135} }