Abstract
We used computer simulation to understand the functional relationships between motor (dynein, HSET, and Eg5) and non-motor (NuMA) proteins involved in microtubule aster organization. The simulation accurately predicted microtubule organization under all combinations of motor and non-motor proteins, provided that microtubule cross-links at minus-ends were dynamic, and dynein and HSET were restricted to cross-linking microtubules in parallel orientation only. A mechanistic model was derived from these data in which a combination of two aggregate properties, Net Minus-end–directed Force and microtubule Cross-linking Orientation Bias, determine microtubule organization. This model uses motor and non-motor proteins, accounts for motor antagonism, and predicts that alterations in microtubule Cross-linking Orientation Bias should compensate for imbalances in motor force during microtubule aster formation. We tested this prediction in the mammalian mitotic extract and, consistent with the model, found that increasing the contribution of microtubule cross-linking by NuMA compensated for the loss of Eg5 motor activity. Thus, this model proposes a precise mechanism of action of each noncentrosomal protein during microtubule aster organization and suggests that microtubule organization in spindles involves both motile forces from motors and static forces from non-motor cross-linking proteins.
References
68
Referenced
42
-
Antonio, C., Ferby, I., Wilhelm, H., Jones, M., Karsenti, E., Nebreda, A.R., and Vernos, I. (2000). Xkid, a chromokinesin required for chromosome alignment on the metaphase plate.Cell.102, 425–435.
(
10.1016/S0092-8674(00)00048-9
) - Berg, H. (1993).Random Walks in Biology, Princeton, NJ: Princeton University Press.
-
Chandra, R., Salmon, E.D., Erickson, H.P., Lockhart, A., and Endow, S.A. (1993). Structural and functional domains of theDrosophilaNcd microtubule motor protein.J. Biol. Chem.268, 9005–9013.
(
10.1016/S0021-9258(18)52971-9
) -
Compton, D.A. (1998). Focusing on spindle poles.J. Cell Sci.111, 1477–1481.
(
10.1242/jcs.111.11.1477
) -
Compton, D.A. (2000). Spindle assembly in animal cells.Annu. Rev. Biochem.69, 95–114.
(
10.1146/annurev.biochem.69.1.95
) -
Crevel, I.M., Lockhart, A., and Cross, R.A. (1997). Kinetic evidence for low chemical processivity in Ncd and Eg5.J. Mol. Biol.273, 160–170.
(
10.1006/jmbi.1997.1319
) -
Cytrynbaum, E.N., Scholey, J.M., and Mogilner, A. (2003). A force balance model of early spindle pole separation inDrosophilaembryos.Biophys. J.84, 757–769.
(
10.1016/S0006-3495(03)74895-4
) -
deCastro, M.J., Foundcave, R.M., Clarke, L.A., Schmidt, C.F., and Stewart, R.J. (2001). Working strokes by single molecules of the kinesin-related microtubule motor Ncd.Nat. Cell Biol.2, 724–729.
(
10.1038/35036357
) -
DeLuca, J.G., Newton, C.N., Himes, R.H., Jordan, M.A., and Wilson, L. (2001). Purification and characterization of native conventional kinesin, HSET, and CENP-E from mitotic HeLa cells.J. Biol. Chem.276, 28014–28021.
(
10.1074/jbc.M102801200
) -
Dionne, M.A., Howard, L., and Compton, D.A. (1999). NuMA is a component of an insoluble matrix at mitotic spindle poles.Cell Motil. Cytoskeleton42, 189–203.
(
10.1002/(SICI)1097-0169(1999)42:3<189::AID-CM3>3.0.CO;2-X
) -
Echeverri, C.J., Paschal, B.M., Vaughan, K.T., and Vallee, R.B. (1996). Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis.J. Cell Biol.132, 617–633.
(
10.1083/jcb.132.4.617
) -
Funabiki, H., and Murray, A.W. (2000). The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement.Cell102, 411–424.
(
10.1016/S0092-8674(00)00047-7
) -
Gaglio, T., Dionne, M.A., and Compton, D.A. (1997). Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes.J. Cell Biol.138, 1055–1066.
(
10.1083/jcb.138.5.1055
) -
Gaglio, T., Saredi, A., Bingham, J.R., Hasbani, M.J., Gill, S.R., Schroer, T.A., and Compton, D.A. (1996). Opposing motor activities are required for the organization of the mammalian mitotic spindle pole.J. Cell Biol.135, 399–414.
(
10.1083/jcb.135.2.399
) -
Gaglio, T., Saredi, A., and Compton, D.A. (1995). NuMA is required for the organization of microtubules into aster-like mitotic arrays.J. Cell Biol.131, 693–708.
(
10.1083/jcb.131.3.693
) -
Garrett, S., Auer, K., Compton, D.A., and Kapoor, T.M. (2002). hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division.Curr. Biol.23, 2055–2059.
(
10.1016/S0960-9822(02)01277-0
) -
Gill, S.R., Schroer, T.A., Szilak, I., Steuer, E.R., Sheetz, M.P., and Cleveland, D.W. (1991). Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein.J. Cell Biol.115, 1639–1650.
(
10.1083/jcb.115.6.1639
) -
Hancock, W.O., and Howard, J. (1998). Processivity of the motor protein kinesin requires two heads.J. Cell Biol.140, 1395–1405.
(
10.1083/jcb.140.6.1395
) -
Haren, L., and Merdes, A. (2002). Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules.J. Cell Sci.115, 1815–1824.
(
10.1242/jcs.115.9.1815
) -
Heald, R., Tournebize, R., Blank, T., Sandaltzopoulos, R., Becker, P., Hyman, A, and Karsenti, E. (1996). Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts.Nature382, 420–425.
(
10.1038/382420a0
) -
Heald, R., Tournebize, R., Habermann, A., Karsenti, E., and Hyman, A. (1998). Spindle assembly inXenopusegg extracts: respective roles of centrosomes and microtubule self-organization.J. Cell Biol.138, 615–628.
(
10.1083/jcb.138.3.615
) -
Hildebrandt, E.R., and Hoyt, M.A. (2000). Mitotic motors inSaccharomyces cerevisiae.Biochim. Biophys. Acta1496, 99–116.
(
10.1016/S0167-4889(00)00012-4
) -
Howard, J., Hudspeth, A.J., and Vale, R.D. (1989). Movement of microtubules by single kinesin molecules.Nature342, 154–158.
(
10.1038/342154a0
) - Howard, J. (2001).Mechanics of Motor Proteins and the Cytoskeleton, Sunderland, MA: Sinauer Press.
-
Hyman, A.A., and Karsenti, E. (1996). Morphogenetic properties of microtubules and mitotic spindle assembly.Cell84, 401–410.
(
10.1016/S0092-8674(00)81285-4
) -
Kapoor, T.M., and Mitchison, T.J. (2001). Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix.J. Cell Biol.154, 1125–1133.
(
10.1083/jcb.200106011
) -
Kashina, A.S., Baskin, R.J., Cole, D.G., Wedaman, K.P., Saxton, W.M., and Scholey J.M.M. (1996). A bipolar kinesin.Nature379, 270–272.
(
10.1038/379270a0
) -
Khodjakov, A., Cole, R.W., Oakley, B.R., and Rieder, C.L. (2000). Centrosome-independent mitotic spindle formation in vertebrates.Curr. Biol.10, 59–67.
(
10.1016/S0960-9822(99)00276-6
) -
Khodjakov, A., Copenagle, L., Gordon, M.B., Compton, D.A., and Kapoor, T.M. (2003). Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis.J. Cell Biol.160, 671–683.
(
10.1083/jcb.200208143
) -
King, S.J., and Schroer, T.A. (2000). Dynactin increases the processivity of the cytoplasmic dynein motor.Nat. Cell Biol.2, 20–24.
(
10.1038/71338
) -
Kuriyama, R., Kofron, M., Essner, R., Kato, T., Dragas-Granoic, S., Omoto, C.K., and Khodjakov, A. (1995). Characterization of a minus end-directed kinesin-like motor protein from cultured mammalian cells.J. Cell Biol.129, 1049–1059.
(
10.1083/jcb.129.4.1049
) -
Levesque, A.A., and Compton, D.A. (2001). The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles.J. Cell Biol.154, 1135–1146.
(
10.1083/jcb.200106093
) 10.1091/mbc.e03-02-0082
-
Mack, G.J., and Compton, D.A. (2001). Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein.Proc. Natl. Acad. Sci. USA98, 14434–14439.
(
10.1073/pnas.261371298
) -
Malik, F., Brillinger, D., and Vale, R.D. (1994). High-resolution tracking of microtubule motility driven by a single kinesin motor.Proc. Natl. Acad. Sci. USA91, 4584–4588.
(
10.1073/pnas.91.10.4584
) -
Marshall, W.F., Marko, J.F., Agard, D.A., and Sedat, J.W. (2001). Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis.Curr. Biol.11, 569–578.
(
10.1016/S0960-9822(01)00180-4
) -
Matuliene, J., Essner, R., Ryu, J., Hamaguchi, Y., Baas, P.W., Haraguchi, T., Hiraoka, Y., and Kuriyama, R. (1999). Function of a minus-end-directed kinesin-like motor protein in mammalian cells.J. Cell Sci.112, 4041–4050.
(
10.1242/jcs.112.22.4041
) -
Mayer, T.U., Kapoor, T.M., Haggarty, S.J., King, R.W., Schreiber, S.L., and Mitchison, T.J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen.Science286, 971–974.
(
10.1126/science.286.5441.971
) -
McIntosh, J.R., and Koonce, M.P. (1989). The mitotic spindle.Science246, 622–628.
(
10.1126/science.2683078
) -
Merdes, A., and Cleveland, D.W. (1997). Pathways of spindle pole formation: different mechanisms; conserved components.J. Cell Biol.138, 953–956.
(
10.1083/jcb.138.5.953
) -
Merdes, A., Heald, R., Samejima, K., Earnshaw, W.C., and Cleveland, D.W. (2000). Formation of spindle poles by dynein/dynactin-dependent transport of NuMA.J. Cell Biol.149, 851–862.
(
10.1083/jcb.149.4.851
) -
Merdes, A., Ramyar, K., Vechio, J.D., and Cleveland, D.W. (1996). A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly.Cell87, 447–458.
(
10.1016/S0092-8674(00)81365-3
) -
Mitchison, T.J., Evans, L., Schulze, E., and Kirschner, M. (1986). Beyond self-assembly: from microtubules to morphogenesis.Cell45, 515–27.
(
10.1016/0092-8674(86)90283-7
) -
Mollinari, C., Kleman, J.P., Jiang, W., Schoehn, G., Hunter, T., and Margolis, R.L. (2002). PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone.J. Cell Biol.157, 1175–1186.
(
10.1083/jcb.200111052
) -
Mountain, V., Simerly, C., Howard, L., Ando, A., Schatten, G., and Compton, D.A. (1999). The kinesin-related protein, HSET, opposes the activity of Eg5 and crosslinks microtubules in the mammalian mitotic spindle.J. Cell Biol.147, 351–365.
(
10.1083/jcb.147.2.351
) -
Nedelec, F. (2002). Computer simulations reveal motor properties generating stable antiparallel microtubule interactions.J. Cell Biol.158, 1005–1015.
(
10.1083/jcb.200202051
) -
Nedelec, F., Surrey, T., and Maggs A.C. (2001). Dynamic concentration of motors in microtubule arrays.Phys. Rev. Lett.14, 3192–3195.
(
10.1103/PhysRevLett.86.3192
) -
Nedelec, F.J., Surrey, T., Maggs, A.C., and Leibler, S. (1997). Self-organization of microtubules and motors.Nature389, 305–308.
(
10.1038/38532
) -
Nicklas, R.B. (1989). The motor for poleward chromosome movement in anaphase is in or near the kinetochore.J. Cell Biol.109, 2245–2255.
(
10.1083/jcb.109.5.2245
) -
Odde, D.J., and Buettner, H.M. (1995). Time series characterization of simulated microtubule dynamics in the nerve growth cone.Ann. Biomed. Eng.23, 268–286.
(
10.1007/BF02584428
) 10.1091/mbc.7.10.1639
-
Rieder, C.L. (1981). The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells.Chromosoma84, 145–158.
(
10.1007/BF00293368
) 10.1091/mbc.8.6.1025
-
Sawin, K.E., LeGuellec, K., Philippe, M., and Mitchison, T.J. (1992). Mitotic spindle organization by a plus end-directed microtubule motor.Nature359, 540–543.
(
10.1038/359540a0
) -
Schuyler, S.C., Lin, J.Y., and Pellman, D. (2003). The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix.J. Cell Biol.160, 517–528.
(
10.1083/jcb.200210021
) -
Sharp, D.J., Kuriyama, R., Essner, R., and Baas, P.W. (1997). Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation.J. Cell Sci.110, 2373–2380.
(
10.1242/jcs.110.19.2373
) -
Sharp, D.J., Rogers, G.C., and Scholey, J.M. (2000). Microtubule motors in mitosis.Nature407, 41–47.
(
10.1038/35024000
) -
Sharp, D.J., Yu, K.R., Sisson, J.C., Sullivan, W., and Scholey, J.M. (1999). Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos.Nat. Cell Biol.1, 51–54.
(
10.1038/9025
) -
Steuer, E.R., Wordeman, L., Schroer, T.A., and Sheetz, M.P. (1990). Localization of cytoplasmic dynein to mitotic spindles and kinetochores.Nature345, 266–268.
(
10.1038/345266a0
) -
Surrey, T., Nedelec, F., Leibler, S., and Karsenti, E. (2001). Physical properties determining self-organization of motors and microtubules.Science292, 1167–1171.
(
10.1126/science.1059758
) -
Svoboda, K., and Block, S.M. (1994). Force and velocity measured for single kinesin molecules.Cell77, 773–784.
(
10.1016/0092-8674(94)90060-4
) -
Szollosi, D., Clarco, P., and Donahue, R.P. (1972). Absence of centrioles in the first and second meiotic spindles of mouse oocytes.J. Cell Sci.11, 521–531.
(
10.1242/jcs.11.2.521
) -
Tulu, U.S., Rusan, N.M., and Wadsworth, P. (2003). Peripheral, non-centrosome-associated microtubules contribute to spindle formation in centrosome-containing cells.Curr. Biol.13, 1894–1899.
(
10.1016/j.cub.2003.10.002
) -
Vale, R.D., Malik, F., and Brown, D. (1992). Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins.J. Cell Biol.119, 1589–1596.
(
10.1083/jcb.119.6.1589
) -
Verde, F., Berrez, J.M., Antony, C., and Karsenti, E. (1991). Taxol-induced microtubule asters in mitotic extracts ofXenopuseggs: requirement for phosphorylated factors and cytoplasmic dynein.J. Cell Biol.112, 1177–1187.
(
10.1083/jcb.112.6.1177
) -
Visscher, K., Schnitzer, M.J., and Block, S.M. (1999). Single kinesin molecules studied with a molecular force clamp.Nature400, 184–189.
(
10.1038/22146
) -
Xu, J., Wirtz, D., and Pollard, T.D. (1998). Dynamic crosslinking by alpha-actinin determines the mechanical properties of actin filament networks.J. Biol. Chem.273, 9570–9576.
(
10.1074/jbc.273.16.9570
) -
Yajima, J., Edamatsu, M., Watai-Nishii, J., Tokai-Nishizumi, N., Yamamoto, T., and Toyoshima, Y.Y. (2003). The human chromokinesin Kid is a plus end-directed microtubule-based motor.EMBO J.22, 1067–1074.
(
10.1093/emboj/cdg102
)
Dates
Type | When |
---|---|
Created | 21 years, 6 months ago (Feb. 23, 2004, 8:54 p.m.) |
Deposited | 4 years, 2 months ago (June 14, 2021, 5:24 p.m.) |
Indexed | 4 months, 3 weeks ago (April 11, 2025, 7:49 a.m.) |
Issued | 21 years, 4 months ago (May 1, 2004) |
Published | 21 years, 4 months ago (May 1, 2004) |
Published Print | 21 years, 4 months ago (May 1, 2004) |
@article{Chakravarty_2004, title={A Mechanistic Model for the Organization of Microtubule Asters by Motor and Non-Motor Proteins in a Mammalian Mitotic Extract}, volume={15}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e03-08-0579}, DOI={10.1091/mbc.e03-08-0579}, number={5}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Chakravarty, Arijit and Howard, Louisa and Compton, Duane A.}, year={2004}, month=may, pages={2116–2132} }