Crossref journal-article
American Society for Cell Biology (ASCB)
Molecular Biology of the Cell (1076)
Abstract

Dynamic rearrangements of cell-cell adhesion underlie a diverse range of physiological processes, but their precise molecular mechanisms are still obscure. Thus, identification of novel players that are involved in cell-cell adhesion would be important. We isolated a human kelch-related protein, Kelch-like ECT2 interacting protein (KLEIP), which contains the broad-complex, tramtrack, bric-a-brac (BTB)/poxvirus, zinc finger (POZ) motif and six-tandem kelch repeats. KLEIP interacted with F-actin and was concentrated at cell-cell contact sites of Madin-Darby canine kidney cells, where it colocalized with F-actin. Interestingly, this localization took place transiently during the induction of cell-cell contact and was not seen at mature junctions. KLEIP recruitment and actin assembly were induced around E-cadherin–coated beads placed on cell surfaces. The actin depolymerizing agent cytochalasin B inhibited this KLEIP recruitment around E-cadherin–coated beads. Moreover, constitutively active Rac1 enhanced the recruitment of KLEIP as well as F-actin to the adhesion sites. These observations strongly suggest that KLEIP is localized on actin filaments at the contact sites. We also found that N-terminal half of KLEIP, which lacks the actin-binding site and contains the sufficient sequence for the localization at the cell-cell contact sites, inhibited constitutively active Rac1-induced actin assembly at the contact sites. We propose that KLEIP is involved in Rac1-induced actin organization during cell-cell contact in Madin-Darby canine kidney cells.

Bibliography

Hara, T., Ishida, H., Raziuddin, R., Dorkhom, S., Kamijo, K., & Miki, T. (2004). Novel Kelch-like Protein, KLEIP, Is Involved in Actin Assembly at Cell-Cell Contact Sites of Madin-Darby Canine Kidney Cells. Molecular Biology of the Cell, 15(3), 1172–1184.

Authors 6
  1. Takahiko Hara (first)
  2. Hiroshi Ishida (additional)
  3. Razi Raziuddin (additional)
  4. Stephan Dorkhom (additional)
  5. Keiju Kamijo (additional)
  6. Toru Miki (additional)
References 39 Referenced 30
  1. Adams, C.L., Chen, Y.T., Smith, S.J., and Nelson, W.J. (1998). Mechanism of epithelial cell-cell revealed by high-resolution tracking of E-cadherin-green fluorescent protein.J. Cell Biol.142, 1105-1119. (10.1083/jcb.142.4.1105)
  2. Adams, J., Kelso, R., and Cooly, L. (2000). The kelch repeat superfamily of proteins: propellers of cell function.Trends Cell Biol.10, 17-24. (10.1016/S0962-8924(99)01673-6)
  3. Albagli, O., Drordain, P., Dewwindt, C., Lecoceq, G., and Leprince, D. (1995). The BTB/POZ domain: a new protein-protein interaction motif common DNA- and actin-binding proteins.Cell Growth Differ.6, 1193-1198.
  4. Allan, V. J. (2000). Basic immunofluorescence. In:Protein Localization by Fluorescence Microscopy: A Practical Approach, ed. V.J. Allan. Oxford, United Kingdom: Oxford University Press, 1-16.
  5. Bomont, P., and Koeing, M. (2003). Intermediate filament aggregation in fibroblasts of giant axonal neuropathy patients is aggravated in non dividing cells and by microtubule destabilization.Hum. Mol. Genet.12, 813-822. (10.1093/hmg/ddg092)
  6. Braga, V. (2002a). Cadherin adhesion regulation in keratinocytes. In:Cell-Cell Interaction: A Practical Approach, ed. T.P. Fleming. Oxford, United Kingdom: Oxford University Press, 1-36. (10.1093/oso/9780199638642.003.0001)
  7. Braga, V.M.M. (2002b). Cell-cell adhesion and signalling.Curr. Opin. Cell. Biol.14, 546-556. (10.1016/S0955-0674(02)00373-3)
  8. Braga, V.M.M., Machesky, L.M., Hall, A., and Hotchin, N.A. (1997). The small GTPases Rho and Rac are required for the establishment of Cadherin-dependent cell-cell contacts.J. Cell Biol.137, 1421-1431. (10.1083/jcb.137.6.1421)
  9. Burbelo, P.D., Miyamoto, S., Utani, A., Brill, S., Yamada, K.M., Hall, A., and Yamada, Y. (1995). p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking.J. Biol. Chem.270, 30919-30926. (10.1074/jbc.270.52.30919)
  10. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschi, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature411, 494-498. (10.1038/35078107)
  11. Ehrlich, J.S., Hansen, M.D.H., and Nelson, W.J. (2002). Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell-cell adhesion.Dev. Cell.3, 259-270. (10.1016/S1534-5807(02)00216-2)
  12. Fukata, M., and Kaibuchi, K. (2001). Rho-family GTPases in cadherin-mediated cell-cell adhesion.Nat. Rev.2, 887-897. (10.1038/35103068)
  13. Fukata, M., Nakagawa, M., Itoh, N., Kawajiri, A., Yamaga, M., Kuroda, S., and Kaibuchi, K. (2001). Involvement of IQGAP1, an effector of Rac1 and Cdc42 GTPases, in cell-cell dissociation during cell scattering.Mol. Cell. Biol.21, 2165-2183. (10.1128/MCB.21.6.2165-2183.2001)
  14. Gimond, C., van der Flier, A., van Delft, Brakebusch, C., Kuikman, I., Collard, J.G., Fässler, R., and Sonnenberg, A. (1999) Induction of cell scattering by expression of β1-integrins in β1-deficient epithelial cells requires activation of members of Rho family of GTPase and downregulation of cadherin and catenin function.J. Cell Biol.147, 1325-1340. (10.1083/jcb.147.6.1325)
  15. Godt, D., Couderc, J.L., Cramton, S.E., and Laski, F.A. (1993). Pattern formation in the limbs ofDrosophila: bric a brac is expressed in a both gradient and wave-like pattern and is required for specification and proper segmentation of the tarsus.Development119, 799-812. (10.1242/dev.119.3.799)
  16. Harborth, J., Elbashir, S.M., Bechert, K., Tushci, T., and Weber, K. (2001). Identification of essential genes in cultured mammalian cells using small interfering RNAs.J. Cell Sci.114, 4557-4565. (10.1242/jcs.114.24.4557)
  17. Hernandez, M., Andres-Barquin, P.J., Martinez, S., Buifone, A., Rubenstein, J.L.R., and Israel, M.A. (1997). ENC-1, a novel mammalian kelch-related gene specifically expressed in the nervous system encodes an actin-binding protein.J. Neurosci.17, 3038-3051. (10.1523/JNEUROSCI.17-09-03038.1997)
  18. Johnson, R.G., Meyer, R.A., Li, X.R., Preus, D.M., Tan, L., Grunenwald, H., Paulson, A.F., Laird, D.W., and Sheridan, J.S. (2002). Gap junctions assemble in the presence of cytoskeletal inhibitors, but enhanced assembly requires microtubules.Exp. Cell. Res.275, 67-80. (10.1006/excr.2002.5480)
  19. Jou, T.S., Schneeberger, E.E., and Nelson, W.J. (1998). Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases.J. Cell Biol.142, 101-115. (10.1083/jcb.142.1.101)
  20. Jou, T.S., and Nelson, W.J. (1998). Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity.J. Cell Biol.142, 85-100. (10.1083/jcb.142.1.85)
  21. Kovacs, E.M., Ali, R.G., McCormack, A.J., and Yap, A.S. (2002). E-Cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts.J. Biol. Chem.277, 6708-6718. (10.1074/jbc.M109640200)
  22. Kelso, R. J., Hudson, A. M., and Cooley. L. (2002).DrosophilaKelch regulates actin organization via Src64-dependent tyrosine phosphorylation.J. Cell Biol.156, 703-713. (10.1083/jcb.200110063)
  23. Lambert, M., Choquest, D., and Mège, R.M. (2002). Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton.J. Cell Biol.157, 469-467. (10.1083/jcb.200107104)
  24. Lambert, M., Padilla, F., and Mège, R.M. (2000). Immobilized dimers of N-cadherin-Fc chimera mimic cadherin-mediated cell contact formation: contribution of both outside and inside-out signals.J. Cell Sci.113, 2207-2219. (10.1242/jcs.113.12.2207)
  25. Levenberg, S., Katz, B.Z., Yamada, K.M., and Geiger, B. (1998). Long-range and selective autoregulation of cell-cell or cell-matrix adhesions by cadherin or integrin ligands.J. Cell Sci.111, 347-357. (10.1242/jcs.111.3.347)
  26. Miki, T., Smith, C., Long, J., Eva, A., and Flemmeng, T. (1993). Oncogene ect2 is related to regulators of small GTP-binding proteins.Nature362, 462-465. (10.1038/362462a0)
  27. Nakagawa, M., Fukata, M., Yamagata, M., Itoh, N., and Kaibuchi, K. (2001). Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell-cell adhesion sites.J. Cell Sci.114, 1829-1838. (10.1242/jcs.114.10.1829)
  28. Noren, K.N., Arthur, W.T., and Burridge, K. (2003). Cadherin Engagement inhibits RhoA via p190RhoGAP.J. Biol. Chem.278, 13615-13618. (10.1074/jbc.C200657200)
  29. Robinson, D.N., and Cooly, L. (1997).DrosophilaKelch is an oligomeric ring canal actin organizer.J. Cell Biol.138, 799-810. (10.1083/jcb.138.4.799)
  30. Sahai, E., and Marshall, C.J. (2002). ROCK and Dia have opposing effects on adherens junction downstream of Rho.Nat. Cell. Biol.4, 408-415. (10.1038/ncb796)
  31. Solomon, K.R., Malloy, M.A., and Finberg, R.W. (1998). Determination of the non-ionic detergent insolubility and phosphoprotein associations of glycosylphosphatidylinositol-anchored proteins expressed on T cells.Biochem. J.334, 325-333. (10.1042/bj3340325)
  32. Rothen-Rutishauser, B., Riesen, F.K., Braun, A., Günthert, M., and Wunderli-Allenspach, H. (2002). Dynamics of tight and adherens under EGTA treatment.J. Membr. Biol.188, 151-162. (10.1007/s00232-001-0182-2)
  33. Sasagawa, K., Mastudo, Y., Kang, M., Fujimura, L., Iitsuka, Y., Okada, S., Ochiai, T., Tokuhisa, T., and Hatano, M. (2002). Identification of Nd1, a novel murine kelch family protein, involved in stabilization of actin filaments.J. Biol. Chem.277, 44140-44146. (10.1074/jbc.M202596200)
  34. 10.1091/mbc.10.7.2361
  35. Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H., and Takai, Y. (1997). Regulation of cell-cell adhesion by Rac and Rho small G proteins in MDCK cells.J. Cell Biol.139, 1047-1059. (10.1083/jcb.139.4.1047)
  36. Tatsumoto, T., Xie, X., Blumenthal, R., Okamoto, I., and Miki, T. (1999). Human ECT2 is an exchange factor for Rho GTPase, phosphorylated in G2/M phases, and involved in cytokinesis.J. Cell Biol.147, 921-927. (10.1083/jcb.147.5.921)
  37. Trickett, A., and Kwan, Y.L. (2003). T cell stimulation and expansion using anti-CD3/28 beads.J. Immunol. Methods275, 251-255. (10.1016/S0022-1759(03)00010-3)
  38. Vasioukhin, V., and Fuchs, E. (2001). Actin-dynamics and cell-cell adhesion in epithelia.Curr. Opin. Cell Biol.13, 76-84. (10.1016/S0955-0674(00)00177-0)
  39. Xue, F., and Cooley, L. (1993). Kelch encodes a component of intercellular bridges inDrosophilaegg chambers.Cell72, 681-693. (10.1016/0092-8674(93)90397-9)
Dates
Type When
Created 21 years, 8 months ago (Dec. 15, 2003, 8:13 p.m.)
Deposited 1 year, 7 months ago (Jan. 11, 2024, 12:41 p.m.)
Indexed 1 year, 3 months ago (May 12, 2024, 3:16 p.m.)
Issued 21 years, 6 months ago (March 1, 2004)
Published 21 years, 6 months ago (March 1, 2004)
Published Print 21 years, 6 months ago (March 1, 2004)
Funders 0

None

@article{Hara_2004, title={Novel Kelch-like Protein, KLEIP, Is Involved in Actin Assembly at Cell-Cell Contact Sites of Madin-Darby Canine Kidney Cells}, volume={15}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e03-07-0531}, DOI={10.1091/mbc.e03-07-0531}, number={3}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Hara, Takahiko and Ishida, Hiroshi and Raziuddin, Razi and Dorkhom, Stephan and Kamijo, Keiju and Miki, Toru}, year={2004}, month=mar, pages={1172–1184} }