Crossref journal-article
American Society for Cell Biology (ASCB)
Molecular Biology of the Cell (1076)
Abstract

Hsp90 functions in association with several cochaperones for folding of protein kinases and transcription factors, although the relative contribution of each to the overall reaction is unknown. We assayed the role of nine different cochaperones in the activation of Ste11, a Saccharomyces cerevisiae mitogen-activated protein kinase kinase kinase. Studies on signaling via this protein kinase pathway was measured by α-factor-stimulated induction of FIG1 or lacZ, and repression of HHF1. Several cochaperone mutants tested had reduced FIG1 induction or HHF1 repression, although to differing extents. The greatest defects were in cpr7Δ, sse1Δ, and ydj1Δ mutants. Assays of Ste11 kinase activity revealed a pattern of defects in the cochaperone mutant strains that were similar to the gene expression studies. Overexpression of CDC37, a chaperone required for protein kinase folding, suppressed defects the sti1Δ mutant back to wild-type levels. CDC37 overexpression also restored stable Hsp90 binding to the Ste11 protein kinase domain in the sti1Δ mutant strain. These data suggest that Cdc37 and Sti1 have functional overlap in stabilizing Hsp90:client complexes. Finally, we show that Cns1 functions in MAP kinase signaling in association with Cpr7.

Bibliography

Lee, P., Shabbir, A., Cardozo, C., & Caplan, A. J. (2004). Sti1 and Cdc37 Can Stabilize Hsp90 in Chaperone Complexes with a Protein Kinase. Molecular Biology of the Cell, 15(4), 1785–1792.

Authors 4
  1. Paul Lee (first)
  2. Arsalan Shabbir (additional)
  3. Christopher Cardozo (additional)
  4. Avrom J. Caplan (additional)
References 53 Referenced 67
  1. Abbas-Terki, T., Briand, P.A., Donze, O., and Picard, D. (2002). The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically.Biol. Chem.383,1335-1342. (10.1515/BC.2002.152)
  2. Abbas-Terki, T., Donze, O., and Picard, D. (2000). The molecular chaperone Cdc37 is required for Ste11 function and pheromone-induced cell cycle arrest.FEBS Lett.467,111-116. (10.1016/S0014-5793(00)01134-0)
  3. Bohen, S.P. (1998). Genetic and biochemical analysis of p23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins.Mol. Cell. Biol.18,3330-3339. (10.1128/MCB.18.6.3330)
  4. Bohen, S.P., Kralli, A., and Yamamoto, K.R. (1995). Hold 'em and fold 'em: chaperones and signal transduction [comment].Science268,1303-1304. (10.1126/science.7761850)
  5. Borkovich, K.A., Farrelly, F.W., Finkelstein, D.B., Taulien, J., and Lindquist, S. (1989). hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures.Mol. Cell. Biol.9,3919-3930. (10.1128/MCB.9.9.3919)
  6. Boudeau, J., Deak, M., Lawlor, M.A., Morrice, N.A., and Alessi, D.R. (2003). Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability.Biochem. J.370,849-857. (10.1042/bj20021813)
  7. Caplan, A.J. (1999). Hsp90's secrets unfold: new insights from structural and functional studies.Trends Cell Biol.9,262-268. (10.1016/S0962-8924(99)01580-9)
  8. Caplan, A.J., and Douglas, M.G. (1991). Characterization of YDJ1,a yeast homologue of the bacterial dnaJ protein.J. Cell Biol.114,609-621. (10.1083/jcb.114.4.609)
  9. Chang, H.C., Nathan, D.F., and Lindquist, S. (1997). In vivo analysis of the Hsp90 cochaperone Sti1 (p60).Mol. Cell. Biol.17,318-325. (10.1128/MCB.17.1.318)
  10. Cheetham, M.E., and Caplan, A.J. (1998). Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function.Cell Stress Chaperones3,28-36. (10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2)
  11. Cutforth, T., and Rubin, G.M. (1994). Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila.Cell77,1027-1036. (10.1016/0092-8674(94)90442-1)
  12. Cyr, D.M. (1995). Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation.FEBS Lett.359,129-132. (10.1016/0014-5793(95)00024-4)
  13. 10.1091/mbc.7.1.91
  14. Dolinski, K.J., Cardenas, M.E., and Heitman, J. (1998). CNS1 encodes an essential p60/Sti1 homolog in Saccharomyces cerevisiae that suppresses cyclophilin 40 mutations and interacts with Hsp90.Mol. Cell. Biol.18,7344-7352. (10.1128/MCB.18.12.7344)
  15. Duina, A.A., Chang, H.C., Marsh, J.A., Lindquist, S., and Gaber, R.F. (1996). A cyclophilin function in Hsp90-dependent signal transduction [see comments].Science274,1713-1715. (10.1126/science.274.5293.1713)
  16. Elion, E.A. (2000). Pheromone response, mating and cell biology.Curr. Opin. Microbiol.3,573-581. (10.1016/S1369-5274(00)00143-0)
  17. Fang, Y., Fliss, A.E., Rao, J., and Caplan, A.J. (1998). SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins.Mol. Cell. Biol.18,3727-3734. (10.1128/MCB.18.7.3727)
  18. 10.1091/mbc.8.12.2501
  19. Grammatikakis, N., Lin, J.H., Grammatikakis, A., Tsichlis, P.N., and Cochran, B.H. (1999). p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function.Mol. Cell. Biol.19,1661-1672. (10.1128/MCB.19.3.1661)
  20. Hartson, S.D., Irwin, A.D., Shao, J., Scroggins, B.T., Volk, L., Huang, W., and Matts, R.L. (2000). p50 Cdc 37 is a nonexclusive hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules.Biochemistry39,7631-7644. (10.1021/bi000315r)
  21. Hunter, T., and Poon, R.Y.C. (1997). Cdc37,a protein kinase chaperone?Trends Cell Biol.7,157-161.
  22. Kimura, Y., Rutherford, S.L., Miyata, Y., Yahara, I., Freeman, B.C., Yue, L., Morimoto, R.I., and Lindquist, S. (1997). Cdc37 is a molecular chaperone with specific functions in signal transduction.Genes Dev.11,1775-1785. (10.1101/gad.11.14.1775)
  23. Kimura, Y., Yahara, I., and Lindquist, S. (1995). Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways [see comments].Science268,1362-1365. (10.1126/science.7761857)
  24. Lamphere, L., Fiore, F., Xu, X., Brizuela, L., Keezer, S., Sardet, C., Draetta, G.F., and Gyuris, J. (1997). Interaction between Cdc37 and Cdk4 in human cells.Oncogene14,1999-2004. (10.1038/sj.onc.1201036)
  25. Lee, P., Rao, J., Fliss, A., Yang, E., Garrett, S., and Caplan, A.J. (2002). The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability.J. Cell Biol.159,1051-1059. (10.1083/jcb.200210121)
  26. Liu, X.D., Morano, K.A., and Thiele, D.J. (1999). The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone.J. Biol. Chem.274,26654-26660. (10.1074/jbc.274.38.26654)
  27. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Methods25,402-408. (10.1006/meth.2001.1262)
  28. Lotz, G.P., Lin, H., Harst, A., and Obermann, W.M. (2003). Aha1 binds to the middle domain of hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone.J. Biol. Chem.278,17228-17235. (10.1074/jbc.M212761200)
  29. 10.1091/mbc.9.11.3071
  30. Marsh, J.A., Kalton, H.M., and Gaber, R.F. (1998). Cns1 is an essential protein associated with the hsp90 chaperone complex in Saccharomyces cerevisiae that can restore cyclophilin 40-dependent functions in cpr7Delta cells.Mol. Cell. Biol.18,7353-7359. (10.1128/MCB.18.12.7353)
  31. Mayr, C., Richter, K., Lilie, H., and Buchner, J. (2000). Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties.J. Biol. Chem.275,34140-34146. (10.1074/jbc.M005251200)
  32. Miyata, Y., Ikawa, Y., Shibuya, M., and Nishida, E. (2001). Specific association of a set of molecular chaperones including HSP90 and Cdc37 with MOK, a member of the mitogen-activated protein kinase superfamily.J. Biol. Chem.276,21841-21848. (10.1074/jbc.M010944200)
  33. Morishima, Y., Kanelakis, K.C., Silverstein, A.M., Dittmar, K.D., Estrada, L., and Pratt, W.B. (2000). The Hsp organizer protein hop enhances the rate of but is not essential for glucocorticoid receptor folding by the multiprotein Hsp90-based chaperone system.J. Biol. Chem.275,6894-6900. (10.1074/jbc.275.10.6894)
  34. Mukai, H., Kuno, T., Tanaka, H., Hirata, D., Miyakawa, T., and Tanaka, C. (1993). Isolation and characterization of SSE1 and SSE2, new members of the yeast HSP70 multigene family.Gene132,57-66. (10.1016/0378-1119(93)90514-4)
  35. Neiman, A.M., and Herskowitz, I. (1994). Reconstitution of a yeast protein kinase cascade in vitro: activation of the yeast MEK homologue STE7 by STE11.Proc. Natl. Acad. Sci. USA91,3398-3402. (10.1073/pnas.91.8.3398)
  36. Nicolet, C.M., and Craig, E.A. (1989). Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae.Mol. Cell. Biol.9,3638-3646. (10.1128/MCB.9.9.3638)
  37. Panaretou, B.et al.(2002). Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1.Mol. Cell10,1307-1318. (10.1016/S1097-2765(02)00785-2)
  38. Pratt, W.B., and Toft, D.O. (1997). Steroid receptor interactions with heat shock protein and immunophilin chaperones.Endocr. Rev.18,306-360.
  39. Pratt, W.B., and Toft, D.O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery.Exp. Biol. Med. (Maywood)228,111-133. (10.1177/153537020322800201)
  40. Prodromou, C., and Pearl, L.H. (2003). Structure and functional relationships of Hsp90.Curr. Cancer Drug Targets3,301-323. (10.2174/1568009033481877)
  41. Prodromou, C., Siligardi, G., O'Brien, R., Woolfson, D.N., Regan, L., Panaretou, B., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1999). Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.EMBO J.18,754-762. (10.1093/emboj/18.3.754)
  42. Rajapandi, T., Greene, L., and Eisenberg, E. (2000). The molecular chaperones Hsp90 and Hsc70 are both necessary and sufficient to activate hormone binding by glucocorticoid receptor.J. Biol. Chem.275,22597-22604. (10.1074/jbc.M002035200)
  43. Rao, J., Lee, P., Benzeno, S., Cardozo, C., Albertus, J., Robins, D.M., and Caplan, A.J. (2001). Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor.J. Biol. Chem.276,5814-5820. (10.1074/jbc.M007385200)
  44. Reed, S.I. (1980a). The selection of amber mutations in genes required for completion of start, the controlling event of the cell division cycle of S. cerevisiae.Genetics95,579-588. (10.1093/genetics/95.3.579)
  45. Reed, S.I. (1980b). The selection of S. cerevisiae mutants defective in the start event of cell division.Genetics95,561-577. (10.1093/genetics/95.3.561)
  46. Roberts, C.J.et al.(2000). Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles.Science287,873-880. (10.1126/science.287.5454.873)
  47. Scholz, G.M., Cartledge, K., and Hall, N.E. (2001). Identification and characterization of Harc, a novel Hsp90-associating relative of Cdc37.J. Biol. Chem.276,30971-30979. (10.1074/jbc.M103889200)
  48. Siligardi, G., Panaretou, B., Meyer, P., Singh, S., Woolfson, D.N., Piper, P.W., Pearl, L.H., and Prodromou, C. (2002). Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37.J. Biol. Chem.277,20151-20159. (10.1074/jbc.M201287200)
  49. Silverstein, A.M., Grammatikakis, N., Cochran, B.H., Chinkers, M., and Pratt, W.B. (1998). p50(cdc37) binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site.J. Biol. Chem.273,20090-20095. (10.1074/jbc.273.32.20090)
  50. Stepanova, L., Leng, X., Parker, S.B., and Harper, J.W. (1996). Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4.Genes Dev.10,1491-1502. (10.1101/gad.10.12.1491)
  51. Tesic, M., Marsh, J.A., Cullinan, S.B., and Gaber, R.F. (2003). Functional interactions between Hsp90 and the co-chaperones Cns1 and Cpr7 in Saccharomyces cerevisiae.J. Biol. Chem.278,32692-32701. (10.1074/jbc.M304315200)
  52. Wang, X., Grammatikakis, N., and Hu, J. (2002). Role of P50/CDC37 in hepadnavirus assembly and replication.J. Biol. Chem.277,24361-24367. (10.1074/jbc.M202198200)
  53. Warth, R., Briand, P.A., and Picard, D. (1997). Functional analysis of the yeast 40 kDa cyclophilin Cyp40 and its role for viability and steroid receptor regulation.Biol. Chem.378,381-391. (10.1515/bchm.1997.378.5.381)
Dates
Type When
Created 21 years, 7 months ago (Jan. 26, 2004, 8:33 p.m.)
Deposited 4 years, 2 months ago (June 13, 2021, 11:54 p.m.)
Indexed 1 year, 1 month ago (July 23, 2024, 12:32 a.m.)
Issued 21 years, 4 months ago (April 1, 2004)
Published 21 years, 4 months ago (April 1, 2004)
Published Print 21 years, 4 months ago (April 1, 2004)
Funders 0

None

@article{Lee_2004, title={Sti1 and Cdc37 Can Stabilize Hsp90 in Chaperone Complexes with a Protein Kinase}, volume={15}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e03-07-0480}, DOI={10.1091/mbc.e03-07-0480}, number={4}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Lee, Paul and Shabbir, Arsalan and Cardozo, Christopher and Caplan, Avrom J.}, year={2004}, month=apr, pages={1785–1792} }