Crossref journal-article
American Society for Cell Biology (ASCB)
Molecular Biology of the Cell (1076)
Abstract

The effect of nonspecific proteolysis on the structure of single isolated mitotic newt chromosomes was studied using chromosome elastic response as an assay. Exposure to either trypsin or proteinase K gradually decondensed and softened chromosomes but without entirely eliminating their elastic response. Analysis of chromosome morphology revealed anisotropic decondensation upon digestion, with length increasing more than width. Prolonged protease treatment resulted only in further swelling of the chromosome without complete dissolution. Mild trypsinization induced sensitivity of chromosome elasticity to five- and six-base-specific restriction enzymes. These results, combined with previous studies of effects of nucleases on mitotic chromosome structure, indicate that mild proteolysis gradually reduces the density of chromatin-constraining elements in the mitotic chromosome, providing evidence consistent with an anisotropically folded “chromatin network” model of mitotic chromosome architecture.

Bibliography

Pope, L. H., Xiong, C., & Marko, J. F. (2006). Proteolysis of Mitotic Chromosomes Induces Gradual and Anisotropic Decondensation Correlated with a Reduction of Elastic Modulus and Structural Sensitivity to Rarely Cutting Restriction Enzymes. Molecular Biology of the Cell, 17(1), 104–113.

Authors 3
  1. Lisa H. Pope (first)
  2. Chee Xiong (additional)
  3. John F. Marko (additional)
References 40 Referenced 37
  1. Almagro, S., Riveline, D., Hirano, T., Houchmandzadeh, B., and Dimitrov, S. (2004). The mitotic chromosome is an assembly of rigid elastic axes organized by structural maintenance of chromosomes (SMC) proteins and surrounded by a soft chromatin envelope.J. Biol. Chem.279, 5118–5126. (10.1074/jbc.M307221200)
  2. Bystricky, K., Heun, P., Gehlen, L., Langowski, J., and Gasser, S. M. (2004). Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques.Proc. Natl. Acad. Sci. USA101, 16495–16500. (10.1073/pnas.0402766101)
  3. Callan, H. G., and Macgregor, H. C. (1958). Action of deoxyribonuclease on lampbrush chromosomes.Nature181, 1479–1480. (10.1038/1811479a0)
  4. de la Barre, A. E., Gerson, V., Gout, S., Creaven, M., Allis, C. D., and Dimitrov, S. (2000). Core histone N-termini play an essential role in mitotic chromosome condensation.EMBO J.19, 379–391. (10.1093/emboj/19.3.379)
  5. Earnshaw, W. C., Halligan, B., Cooke, C. A., Heck, M. M., and Liu, L. F. (1985). Topoisomerase II is a structural component of mitotic chromosome scaffolds.J. Cell Biol.100, 1706–1715. (10.1083/jcb.100.5.1706)
  6. Earnshaw, W. C., and Heck, M. M. (1985). Localization of topoisomerase II in mitotic chromosomes.J. Cell Biol.100, 1716–1725. (10.1083/jcb.100.5.1716)
  7. Earnshaw, W. C., and Laemmli, U. K. (1983). Architecture of metaphase chromosomes and chromosome scaffolds.J. Cell Biol.96, 84–93. (10.1083/jcb.96.1.84)
  8. Earnshaw, W. C., and Laemmli, U. K. (1984). Silver staining the chromosome scaffold.Chromosoma89, 186–192. (10.1007/BF00294997)
  9. Gall, J. G. (1963). Kinetics of deoxyribonuclease action on chromosomes.Nature198, 36–38. (10.1038/198036a0)
  10. Gould, D. C., Callan, H. G., and Thomas, C. A., Jr. (1976). The actions of restriction endonucleases on lampbrush chromosomes.J. Cell Sci.21, 303–313. (10.1242/jcs.21.2.303)
  11. Hartley, S. E., and Callan, H. G. (1978). RNA transcription on the giant lateral loops of the lampbrush chromosomes of the American newtNotophthalmus viridescens.J. Cell Sci.34, 279–288. (10.1242/jcs.34.1.279)
  12. Hirano, T. (1995). Biochemical and genetic dissection of mitotic chromosome condensation.Trends Biochem. Sci.20, 357–361. (10.1016/S0968-0004(00)89076-3)
  13. Hirano, T. (2005). SMC proteins and chromosome mechanics: from bacteria to humans.Philos. Trans. R. Soc. Lond. B. Biol. Sci.360, 507–514. (10.1098/rstb.2004.1606)
  14. Hirano, T., and Mitchison, T. J. (1993). Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled inXenopusegg extracts.J. Cell Biol.120, 601–612. (10.1083/jcb.120.3.601)
  15. Hirano, T., and Mitchison, T. J. (1994). A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro.Cell79, 449–458. (10.1016/0092-8674(94)90254-2)
  16. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J., and Peters, J. M. (2004). Distinct functions of condensin I and II in mitotic chromosome assembly.J. Cell Sci.117, 6435–6445. (10.1242/jcs.01604)
  17. Houchmandzadeh, B., and Dimitrov, S. (1999). Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes.J. Cell Biol.145, 215–223. (10.1083/jcb.145.2.215)
  18. Houchmandzadeh, B., Marko, J. F., Chatenay, D., and Libchaber, A. (1997). Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration.J. Cell Biol.139, 1–12. (10.1083/jcb.139.1.1)
  19. Hudson, D. F., Vagnarelli, P., Gassmann, R., and Earnshaw, W. C. (2003). Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes.Dev. Cell5, 323–336. (10.1016/S1534-5807(03)00199-0)
  20. Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T., and Belmont, A. S. (2004). Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure.J. Cell Biol.166, 775–785. (10.1083/jcb.200406049)
  21. Kleckner, N., Zickler, D., Jones, G. H., Dekker, J., Padmore, R., Henle, J., and Hutchinson, J. (2004). A mechanical basis for chromosome function.Proc. Natl. Acad. Sci. USA101, 12592–12597. (10.1073/pnas.0402724101)
  22. Laemmli, U. K., Cheng, S. M., Adolph, K. W., Paulson, J. R., Brown, J. A., and Baumbach, W. R. (1978). Metaphase chromosome structure: the role of nonhistone proteins.Cold Spring Harb. Symp. Quant. Biol.42, 351–360. (10.1101/SQB.1978.042.01.036)
  23. Macgregor, H. C., and Callan, H. G. (1962). The actions of enzymes on lampbrush chromosomes.Q. J. Microscop. Sci.103, 173–203. (10.1242/jcs.s3-103.62.173)
  24. Maniotis, A. J., Bojanowski, K., and Ingber, D. E. (1997). Mechanical continuity and reversible chromosome disassembly within intact genomes removed from living cells.J. Cell Biochem.65, 114–130. (10.1002/(SICI)1097-4644(199704)65:1<114::AID-JCB12>3.0.CO;2-K)
  25. Maresca, T. J., Freedman, B. S., and Heald, R. (2005). Histone H1 is essential for mitotic chromosome architecture and segregation inXenopus laevisegg extracts.J. Cell Biol.169, 859–869. (10.1083/jcb.200503031)
  26. Marsden, M. P., and Laemmli, U. K. (1979). Metaphase chromosome structure: evidence for a radial loop model.Cell17, 849–858. (10.1016/0092-8674(79)90325-8)
  27. Marshall, W. F., Straight, A., Marko, J. F., Swedlow, J., Dernburg, A., Belmont, A., Murray, A. W., Agard, D. A., and Sedat, J. W. (1997). Interphase chromosomes undergo constrained diffusional motion in living cells.Curr. Biol.7, 930–939. (10.1016/S0960-9822(06)00412-X)
  28. 10.1091/mbc.e04-03-0242
  29. Ono, T., Losada, A., Hirano, M., Myers, M. P., Neuwald, A. F., and Hirano, T. (2003). Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells.Cell115, 109–121. (10.1016/S0092-8674(03)00724-4)
  30. Paulson, J. R., and Laemmli, U. K. (1977). The structure of histone-depleted metaphase chromosomes.Cell12, 817–828. (10.1016/0092-8674(77)90280-X)
  31. 10.1091/mbc.11.1.269
  32. 10.1091/mbc.01-08-0401
  33. Poirier, M. G., and Marko, J. F. (2002). Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold.Proc. Natl. Acad. Sci. USA99, 15393–15397. (10.1073/pnas.232442599)
  34. Poirier, M. G., and Marko, J. F. (2003). Micromechanical studies of mitotic chromosomes.Curr. Top Dev. Biol.55, 75–141. (10.1016/S0070-2153(03)01002-0)
  35. Poirier, M. G., Monhait, T., and Marko, J. F. (2002b). Reversible hypercondensation and decondensation of mitotic chromosomes studied using combined chemical-micromechanical techniques.J. Cell. Biochem.85, 422–434. (10.1002/jcb.10132)
  36. Polach, K. J., and Widom, J. (1995). Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation.J. Mol. Biol.254, 130–149. (10.1006/jmbi.1995.0606)
  37. Polach, K. J., and Widom, J. (1999). Restriction enzymes as probes of nucleosome stability and dynamics.Methods Enzymol.304, 278–298. (10.1016/S0076-6879(99)04017-3)
  38. Reese, D. H., Yamada, T., and Moret, R. (1976). An established cell line from the newtNotophthalmus viridescens.Differentiation6, 75–81. (10.1111/j.1432-0436.1976.tb01472.x)
  39. Swedlow, J. R., and Hirano, T. (2003). The making of the mitotic chromosome: modern insights into classical questions.Mol. Cell11, 557–569. (10.1016/S1097-2765(03)00103-5)
  40. Trask, B. J., Allen, S., Massa, H., Fertitta, A., Sachs, R., van den Engh, G., and Wu, M. (1993). Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization.Cold Spring Harb. Symp. Quant. Biol.58, 767–775. (10.1101/SQB.1993.058.01.084)
Dates
Type When
Created 19 years, 10 months ago (Oct. 12, 2005, 8:33 p.m.)
Deposited 2 years, 3 months ago (May 4, 2023, 10:22 p.m.)
Indexed 3 months ago (May 26, 2025, 11:44 a.m.)
Issued 19 years, 8 months ago (Jan. 1, 2006)
Published 19 years, 8 months ago (Jan. 1, 2006)
Published Print 19 years, 8 months ago (Jan. 1, 2006)
Funders 0

None

@article{Pope_2006, title={Proteolysis of Mitotic Chromosomes Induces Gradual and Anisotropic Decondensation Correlated with a Reduction of Elastic Modulus and Structural Sensitivity to Rarely Cutting Restriction Enzymes}, volume={17}, ISSN={1939-4586}, url={http://dx.doi.org/10.1091/mbc.e05-04-0321}, DOI={10.1091/mbc.e05-04-0321}, number={1}, journal={Molecular Biology of the Cell}, publisher={American Society for Cell Biology (ASCB)}, author={Pope, Lisa H. and Xiong, Chee and Marko, John F.}, year={2006}, month=jan, pages={104–113} }