Abstract
This paper studies a variational formulation of the image matching problem. We consider a scenario in which a canonical representative image T T is to be carried via a smooth change of variable into an image that is intended to provide a good fit to the observed data. The images are all defined on an open bounded set G ⊂ R 3 G \subset {R^3} . The changes of variable are determined as solutions of the nonlinear Eulerian transport equation \[ d η ( s ; x ) d s = v ( η ( s ; x ) , s ) , η ( τ ; x ) = x , ( 0.1 ) \frac {{d\eta \left ( s; x \right )}}{{ds}} = v\left ( \eta \left ( s; x \right ),s \right ), \qquad \eta \left ( \tau ; x \right ) = x, \qquad \left ( 0.1 \right ) \] with the location η ( 0 ; x ) \eta \left ( 0; x \right ) in the canonical image carried to the location x x in the deformed image. The variational problem then takes the form \[ arg min v [ ‖ v ‖ 2 + ∫ G | T o η ( 0 ; x ) − D ( x ) | 2 d x ] , ( 0.2 ) \arg \min \limits _v {\kern -0.1pt} \left [ {{{\left \| v \right \|}^2} + \int _G {{{\left | {T o \eta \left ( {0; x} \right ) - D\left ( x \right )} \right |}^2}dx} } \right ], \qquad \left ( {0.2} \right ) \] where ‖ v ‖ \left \| v \right \| is an appropriate norm on the velocity field v ( ⋅ , ⋅ ) v( \cdot , \cdot ) , and the second term attempts to enforce fidelity to the data.
References
19
Referenced
333
-
Y. Amit, U. Grenander, and M. Piccioni, Structural image restoration through deformable templates. J. American Statistical Association 86 (414), 376–387 (June 1991)
(
10.1080/01621459.1991.10475053
) {'volume-title': 'Ordinary differential equations', 'year': '1973', 'author': 'Arnol′d, V. I.', 'key': '2'}
/ Ordinary differential equations by Arnol′d, V. I. (1973)-
R. Bajcsy and S. Kovacic, Multiresolution Elastic Matching, Computer Vision, Graphics, and Image Processing 46, pp. 1–21, 1989
(
10.1016/S0734-189X(89)80014-3
) {'volume-title': 'Deformable shape models for anatomy', 'year': '1994', 'author': 'Christensen, Gary Edward', 'key': '4'}
/ Deformable shape models for anatomy by Christensen, Gary Edward (1994)-
G. E. Christensen, R. D. Rabbitt, and M. I. Miller, Deformable templates using large deformation kinematics, IEEE Transactions on Image Processing, 5(10), 1996, pp. 1435–1447.
(
10.1109/83.536892
) - G. E. Christensen, R. D. Rabbitt, and M. I. Miller, A deformable neuroanatomy textbook based on viscous fluid mechanics, In Jerry Prince and Thordur Runolfsson, editors, Proceedings of the Twenty-Seventh Annual Conference on Information Sciences and Systems, pp. 211–216, Baltimore, Maryland, March 24-26, 1993. Department of Electrical Engineering, The Johns Hopkins University.
-
G. E. Christensen, R. D. Rabbitt, and M. I. Miller, 3D brain mapping using a deformable neuroanatomy, Physics in Medicine and Biology 39, 609–618 (1994)
(
10.1088/0031-9155/39/3/022
) -
R. Dann, J. Hoford, S. Kovacic, M. Reivich, and R. Bajcsy, Evaluation of Elastic Matching Systems for Anatomic (CT, MR) and Functional (PET) Cerebral Images, Journal of Computer Assisted Tomography 13(4), 603–611 (July/August 1989)
(
10.1097/00004728-198907000-00009
) 10.1080/17442508708833444
/ Stochastics / A maximum a posteriori estimator for trajectories of diffusion processes by Zeitouni, O. (1987)10.1080/17442508808833490
/ Stochastics / An existence theorem and some properties of maximum a posteriori estimators of trajectories of diffusions by Zeitouni, O. (1988)10.1111/j.2517-6161.1994.tb02000.x
/ J. Roy. Statist. Soc. Ser. B / Representations of knowledge in complex systems by Grenander, Ulf (1994){'volume-title': 'MINIMUM ENERGY ESTIMATION', 'year': '1980', 'author': 'Hijab, Omar Bakri', 'key': '12'}
/ MINIMUM ENERGY ESTIMATION by Hijab, Omar Bakri (1980){'key': '13', 'series-title': 'Mathematics \\& its Applications', 'volume-title': 'Mechanics of continuous media', 'author': 'Hunter, S. C.', 'year': '1976'}
/ Mechanics of continuous media / Mathematics \& its Applications by Hunter, S. C. (1976){'key': '14', 'series-title': 'Cambridge Studies in Advanced Mathematics', 'isbn-type': 'print', 'volume-title': 'Stochastic flows and stochastic differential equations', 'volume': '24', 'author': 'Kunita, Hiroshi', 'year': '1990', 'ISBN': 'http://id.crossref.org/isbn/0521350506'}
/ Stochastic flows and stochastic differential equations / Cambridge Studies in Advanced Mathematics by Kunita, Hiroshi (1990)-
M. I. Miller, G. E. Christensen, Y. Amit, and U. Grenander, Mathematical textbook of deformable neuroanatomies, Proceedings of the National Academy of Science 90(24) (December 1993)
(
10.1073/pnas.90.24.11944
) 10.1007/BF00925744
/ J. Optim. Theory Appl. / Maximum-likelihood recursive nonlinear filtering by Mortensen, R. E. (1968)- S. Timoshenko, Theory of Elasticity, McGraw-Hill, New York, 1934
- A. Trouvé, Habilitation à diringer les recherches, Technical Report, University Orsay, 1996
10.1007/978-1-4612-1015-3
/ Weakly differentiable functions / Graduate Texts in Mathematics by Ziemer, William P. (1989)
Dates
Type | When |
---|---|
Created | 8 years, 8 months ago (Dec. 14, 2016, 11:43 p.m.) |
Deposited | 10 months, 1 week ago (Oct. 25, 2024, 1:35 p.m.) |
Indexed | 3 months, 1 week ago (May 22, 2025, 3:46 p.m.) |
Issued | 27 years ago (Sept. 1, 1998) |
Published | 27 years ago (Sept. 1, 1998) |
Published Print | 27 years ago (Sept. 1, 1998) |
@article{Dupuis_1998, title={Variational problems on flows of diffeomorphisms for image matching}, volume={56}, ISSN={1552-4485}, url={http://dx.doi.org/10.1090/qam/1632326}, DOI={10.1090/qam/1632326}, number={3}, journal={Quarterly of Applied Mathematics}, publisher={American Mathematical Society (AMS)}, author={Dupuis, Paul and Grenander, Ulf and Miller, Michael I.}, year={1998}, month=sep, pages={587–600} }