Abstract
Fix α ∈ [ 0 , 1 ) \alpha \in [0,1) . Consider the random walk on the circle S 1 S^1 which proceeds by repeatedly rotating points forward or backward, with probability 1 2 \frac 12 , by an angle 2 π α 2\pi \alpha . This paper analyzes the rate of convergence of this walk to the uniform distribution under “discrepancy” distance. The rate depends on the continued fraction properties of the number ξ = 2 α \xi =2\alpha . We obtain bounds for rates when ξ \xi is any irrational, and a sharp rate when ξ \xi is a quadratic irrational. In that case the discrepancy falls as k − 1 2 k^{-\frac 12} (up to constant factors), where k k is the number of steps in the walk. This is the first example of a sharp rate for a discrete walk on a continuous state space. It is obtained by establishing an interesting recurrence relation for the distribution of multiples of ξ \xi which allows for tighter bounds on terms which appear in the Erdős-Turán inequality.
References
21
Referenced
11
10.1137/0906011
/ SIAM J. Sci. Statist. Comput. / The grand tour: a tool for viewing multidimensional data by Asimov, Daniel (1985)10.1007/BFb0086177
/ Group representations in probability and statistics / Institute of Mathematical Statistics Lecture Notes---Monograph Series by Diaconis, Persi (1988){'issue': '4', 'key': '3', 'first-page': '2131', 'article-title': 'Comparison techniques for random walk on finite groups', 'volume': '21', 'author': 'Diaconis, Persi', 'year': '1993', 'journal-title': 'Ann. Probab.', 'ISSN': 'http://id.crossref.org/issn/0091-1798', 'issn-type': 'print'}
/ Ann. Probab. / Comparison techniques for random walk on finite groups by Diaconis, Persi (1993)10.2307/2371336
/ Amer. J. Math. / Ring homomorphisms which are also lattice homomorphisms by Ward, Morgan (1939)-
B.M. Kloss, Limiting distributions on bicompact topological groups, Th. Probab. Appl. 4(1959), 237-270.
(
10.1137/1104026
) {'key': '6', 'volume-title': 'Continued fractions', 'author': 'Khinchin, A. Ya.', 'year': '1964'}
/ Continued fractions by Khinchin, A. Ya. (1964){'key': '7', 'series-title': 'Pure and Applied Mathematics', 'volume-title': 'Uniform distribution of sequences', 'author': 'Kuipers, L.', 'year': '1974'}
/ Uniform distribution of sequences / Pure and Applied Mathematics by Kuipers, L. (1974)10.1007/978-1-4612-4220-8
/ Introduction to Diophantine approximations by Lang, Serge (1995){'key': '9', 'first-page': '22', 'article-title': 'An inequality connected with Weyl’s criterion for uniform distribution', 'author': 'Leveque, W. J.', 'year': '1965'}
/ An inequality connected with Weyl’s criterion for uniform distribution by Leveque, W. J. (1965)10.1002/cpa.3160390710
/ Comm. Pure Appl. Math. / Hecke operators and distributing points on the sphere. I by Lubotzky, A. (1986){'key': '11', 'volume-title': 'Elementary classical analysis', 'author': 'Marsden, Jerrold E.', 'year': '1974'}
/ Elementary classical analysis by Marsden, Jerrold E. (1974)- Mathematica, version 2. Wolfram Research, Inc., 1991.
- P. Matthews, Covering problems for random walks on spheres and finite groups, Ph.D. Thesis, Dept. of Statistics, Stanford Univ., 1985.
10.1215/S0012-7094-73-04055-6
/ Duke Math. J. / Berry-Esseen bounds and a theorem of Erdős and Turán on uniform distribution 𝑚𝑜𝑑1 by Niederreiter, H. (1973)10.1214/aop/1042644708
/ Ann. Probab. / The cut-off phenomenon for random reflections by Porod, Ursula (1996)10.2307/2118575
/ Ann. of Math. (2) / The pinwheel tilings of the plane by Radin, Charles (1994)- E. Rains, personal communication, 1995.
{'issue': '1', 'key': '18', 'first-page': '398', 'article-title': 'Random rotations: characters and random walks on 𝑆𝑂(𝑁)', 'volume': '22', 'author': 'Rosenthal, Jeffrey S.', 'year': '1994', 'journal-title': 'Ann. Probab.', 'ISSN': 'http://id.crossref.org/issn/0091-1798', 'issn-type': 'print'}
/ Ann. Probab. / Random rotations: characters and random walks on 𝑆𝑂(𝑁) by Rosenthal, Jeffrey S. (1994){'key': '19', 'series-title': 'Lecture Notes in Mathematics', 'isbn-type': 'print', 'volume-title': 'Diophantine approximation', 'volume': '785', 'author': 'Schmidt, Wolfgang M.', 'year': '1980', 'ISBN': 'http://id.crossref.org/isbn/3540097627'}
/ Diophantine approximation / Lecture Notes in Mathematics by Schmidt, Wolfgang M. (1980)10.1007/3-540-39466-4_6
/ Encrypting by random rotations by Sloane, N. J. A. (1983)- F.E. Su, Methods for Quantifying Rates of Convergence for Random Walks on Groups, Ph.D. Thesis, Harvard University, 1995.
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 26, 2002, 6:17 p.m.) |
Deposited | 3 years, 9 months ago (Dec. 6, 2021, 9:35 a.m.) |
Indexed | 1 year, 1 month ago (July 9, 2024, 11:10 p.m.) |
Issued | 27 years, 8 months ago (Jan. 1, 1998) |
Published | 27 years, 8 months ago (Jan. 1, 1998) |
Published Online | 27 years, 8 months ago (Jan. 1, 1998) |
@article{Su_1998, title={Convergence of random walks on the circle generated by an irrational rotation}, volume={350}, ISSN={1088-6850}, url={http://dx.doi.org/10.1090/s0002-9947-98-02152-7}, DOI={10.1090/s0002-9947-98-02152-7}, number={9}, journal={Transactions of the American Mathematical Society}, publisher={American Mathematical Society (AMS)}, author={Su, Francis}, year={1998}, pages={3717–3741} }