Bibliography
Förster, A., Planamente, S., Manoli, E., Lossi, N. S., Freemont, P. S., & Filloux, A. (2014). Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC, and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. Journal of Biological Chemistry, 289(47), 33032â33043.
References
48
Referenced
51
10.1016/j.resmic.2013.03.017
/ Res. Microbiol / The Type VI secretion system: a widespread and versatile cell targeting system by Coulthurst (2013)10.1016/j.chom.2013.11.008
/ Cell Host Microbe / A view to a kill: the bacterial type VI secretion system by Ho (2014)10.1016/j.chom.2009.02.005
/ Cell Host Microbe / Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells by Ma (2009)10.1073/pnas.0915156107
/ Proc. Natl. Acad. Sci. U.S.A / In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation by Ma (2010)10.1016/j.mib.2008.11.010
/ Curr. Opin. Microbiol / The type VI secretion system: translocation of effectors and effector-domains by Pukatzki (2009)10.1128/JB.01260-09
/ J. Bacteriol / A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin by Suarez (2010)10.1074/jbc.M112.436725
/ J. Biol. Chem / Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB by Brooks (2013)10.1073/pnas.1222783110
/ Proc. Natl. Acad. Sci. U.S.A / Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae by Dong (2013)10.1016/j.chom.2009.12.007
/ Cell Host Microbe / A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria by Hood (2010)10.1128/JB.05671-11
/ J. Bacteriol / The opportunistic pathogen Serratia marcescens utilizes type VI secretion to target bacterial competitors by Murdoch (2011)10.1038/nature10244
/ Nature / Type VI secretion delivers bacteriolytic effectors to target cells by Russell (2011)10.1038/nature12074
/ Nature / Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors by Russell (2013)10.1074/jbc.M113.488320
/ J. Biol. Chem / Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair by Whitney (2013)10.1016/j.chom.2014.06.002
/ Cell Host Microbe / Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta by Ma (2014)10.1074/jbc.M114.563429
/ J. Biol. Chem / The VgrG proteins are “a la carte” delivery systems for bacterial type VI effectors by Hachani (2014)10.1111/mmi.12571
/ Mol. Microbiol / Genetically distinct pathways guide effector export through the type VI secretion system by Whitney (2014)10.1016/j.chom.2013.11.001
/ Cell Host Microbe / Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host by Fu (2013)10.1038/415553a
/ Nature / Structure of the cell-puncturing device of bacteriophage T4 by Kanamaru (2002)10.1038/emboj.2009.36
/ EMBO J / The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria by Aksyuk (2009)10.1038/nature10846
/ Nature / Type VI secretion requires a dynamic contractile phage tail-like structure by Basler (2012)10.1038/emboj.2008.269
/ EMBO J / Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion by Bönemann (2009)10.1016/j.celrep.2014.05.034
/ Cell Rep / Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism by Kube (2014)10.1074/jbc.M112.439273
/ J. Biol. Chem / The HsiB1C1 (TssB-TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheathlike structure by Lossi (2013)10.1371/journal.pone.0081074
/ PLoS One / Dissection of the TssB-TssC interface during type VI secretion sheath complex formation by Zhang (2013)10.1073/pnas.0813360106
/ Proc. Natl. Acad. Sci. U.S.A / Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin by Leiman (2009)10.1016/j.cell.2013.01.042
/ Cell / Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions by Basler (2013)10.1111/mmi.12147
/ Mol. Microbiol / ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion by Kapitein (2013)10.1074/jbc.M111.253377
/ J. Biol. Chem / Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion by Pietrosiuk (2011)10.1038/nrm1684
/ Nat. Rev. Mol. Cell Biol / AAA+ proteins: have engine, will work by Hanson (2005)10.1371/journal.pone.0023876
/ PLoS One / Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae by Zheng (2011)10.1099/mic.0.2008/016840-0
/ Microbiology / The bacterial type VI secretion machine: yet another player for protein transport across membranes by Filloux (2008)10.1126/science.1128393
/ Science / A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus by Mougous (2006){'key': '10.1074/jbc.M114.600510_bib33', 'first-page': '437', 'article-title': 'The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel sub-complex in the bacterial Type VI secretion system', 'volume': '86', 'author': 'Lossi', 'year': '2012', 'journal-title': 'Mol. Microbiol. Biol. Crystallogr'}
/ Mol. Microbiol. Biol. Crystallogr / The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel sub-complex in the bacterial Type VI secretion system by Lossi (2012)10.1107/S0907444909047337
/ Acta Crystallogr. D Biol. Crystallogr / Xds by Kabsch (2010)10.1107/S0907444910048675
/ Acta Crystallogr. D Biol. Crystallogr / iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM by Battye (2011)10.1107/S0907444906045975
/ Acta Crystallogr. D Biol. Crystallogr / Solving structures of protein complexes by molecular replacement with Phaser by McCoy (2007)10.1007/s10969-007-9018-3
/ J. Struct. Funct. Genomics / Functional insights from structural genomics by Forouhar (2007)10.1107/S0907444911001314
/ Acta Crystallogr. D Biol. Crystallogr / REFMAC5 for the refinement of macromolecular crystal structures by Murshudov (2011)10.1107/S0907444909052925
/ Acta Crystallogr. D Biol. Crystallogr / PHENIX: a comprehensive Python-based system for macromolecular structure solution by Adams (2010)10.1107/S0907444910007493
/ Acta Crystallogr. D Biol. Crystallogr / Features and development of Coot by Emsley (2010)10.1073/pnas.95.10.5752
/ Proc. Natl. Acad. Sci. U.S.A / A bacterial two-hybrid system based on a reconstituted signal transduction pathway by Karimova (1998){'key': '10.1074/jbc.M114.600510_bib42', 'series-title': 'A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria', 'first-page': '71', 'author': 'Miller', 'year': '1992'}
/ A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria by Miller (1992)10.1093/nar/gkt389
/ Nucleic Acids Res / aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity by Kuraku (2013)10.1007/978-1-59745-251-9_6
/ Methods Mol. Biol / Estimating maximum likelihood phylogenies with PhyML by Guindon (2009)10.1186/1471-2105-7-439
/ BMC Bioinformatics / TreeDyn: towards dynamic graphics and annotations for analyses of trees by Chevenet (2006)10.1515/BC.2005.128
/ Biol. Chem / ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria by Schlieker (2005)10.1094/MPMI.2003.16.1.53
/ Mol. Plant Microbe Interact / Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion by Bladergroen (2003)10.1128/JB.01759-08
/ J. Bacteriol / A conserved α-helix essential for a type VI secretion-like system of Francisella tularensis by Bröms (2009)
Dates
Type | When |
---|---|
Created | 10 years, 10 months ago (Oct. 11, 2014, 1:49 a.m.) |
Deposited | 3 years, 7 months ago (Jan. 4, 2022, 11:25 a.m.) |
Indexed | 2 months, 2 weeks ago (June 12, 2025, 12:27 p.m.) |
Issued | 10 years, 9 months ago (Nov. 1, 2014) |
Published | 10 years, 9 months ago (Nov. 1, 2014) |
Published Print | 10 years, 9 months ago (Nov. 1, 2014) |
@article{F_rster_2014, title={Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC, and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes}, volume={289}, ISSN={0021-9258}, url={http://dx.doi.org/10.1074/jbc.m114.600510}, DOI={10.1074/jbc.m114.600510}, number={47}, journal={Journal of Biological Chemistry}, publisher={Elsevier BV}, author={Förster, Andreas and Planamente, Sara and Manoli, Eleni and Lossi, Nadine S. and Freemont, Paul S. and Filloux, Alain}, year={2014}, month=nov, pages={33032–33043} }