Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Gα o , the most abundant G protein in mammalian brain, occurs at least in two subforms, i.e., Gα o1 and Gα o2 , derived by alternative splicing of the mRNA. A third Gα o1 -related isoform, Gα o3 , has been purified, representing about 30% of total G o in brain. Initial studies revealed distinct biochemical properties of Gα o3 as compared with other Gα o isoforms. In matrix-assisted laser desorption/ionization peptide mass mapping of gel-isolated Gα o1 and Gα o3 , C-terminal peptides showed a difference of +1 Da for Gα o3 . Nanoelectrospray tandem mass spectrometry sequencing revealed an Asp instead of an Asn at position 346 of Gα o3 . Gel electrophoretic analysis of recombinant Gα o3 showed the same mobility as native Gα o3 but distinct to Gα o1 . The conversion of 346 Asn→Asp changed the signaling properties, including the velocity of the basal guanine nucleotide-exchange reaction, which points to the involvement of the C terminus in basal guanosine 5′-[γ-thio]triphosphate binding. No cDNA coding for Gα o3 was detected, suggesting an enzymatic deamidation of Gα o1 by a yet-unidentified activity. Therefore, Gα heterogeneity is generated not only at the DNA or RNA levels, but also at the protein level. The relative amount of Gα o1 and Gα o3 differed from cell type to cell type, indicating an additional principle of G protein regulation.

Bibliography

Exner, T., Jensen, O. N., Mann, M., Kleuss, C., & Nürnberg, B. (1999). Posttranslational modification of Gα o1 generates Gα o3 , an abundant G protein in brain. Proceedings of the National Academy of Sciences, 96(4), 1327–1332.

Authors 5
  1. Torsten Exner (first)
  2. Ole N. Jensen (additional)
  3. Matthias Mann (additional)
  4. Christiane Kleuss (additional)
  5. Bernd Nürnberg (additional)
References 56 Referenced 37
  1. 10.1007/BF01200143
  2. 10.1146/annurev.pharmtox.37.1.167
  3. 10.1074/jbc.273.2.669
  4. 10.1126/science.1902986
  5. 10.1016/0165-6147(84)90444-9
  6. J Moss, M Vaughan Adv Enzymol Relat Areas Mol Biol 61, 303–379 (1988). / Adv Enzymol Relat Areas Mol Biol by Moss J (1988)
  7. 10.1073/pnas.89.13.5720
  8. 10.1074/jbc.270.2.503
  9. 10.1146/annurev.bi.65.070196.001325
  10. 10.1016/S0021-9258(18)89881-7
  11. 10.1016/S0021-9258(18)89817-9
  12. 10.1038/344836a0
  13. 10.1073/pnas.87.17.6477
  14. 10.1016/S0021-9258(17)44790-9
  15. 10.1016/S0021-9258(19)38579-5
  16. 10.1016/0014-5793(92)80770-H
  17. 10.1016/0962-8924(93)90122-H
  18. 10.1073/pnas.94.5.1727
  19. 10.1073/pnas.95.6.3269
  20. 10.1016/0896-6273(95)90254-6
  21. 10.1038/380258a0
  22. 10.1038/380255a0
  23. 10.1038/385446a0
  24. 10.1073/pnas.94.16.8866
  25. 10.1016/0014-5793(96)00584-4
  26. 10.1093/emboj/17.2.406
  27. 10.1016/0014-5793(89)81815-0
  28. 10.1111/j.1471-4159.1990.tb04903.x
  29. 10.1111/j.1471-4159.1990.tb05773.x
  30. 10.2337/diab.41.11.1390
  31. 10.1074/jbc.270.9.4189
  32. 10.1042/bj3000387
  33. 10.1111/j.1469-7793.1997.321bk.x
  34. 10.1016/0014-5793(90)81416-L
  35. 10.1016/0014-5793(91)80814-J
  36. 10.1038/379466a0
  37. 10.1074/jbc.273.12.7024
  38. O N Jensen, A Shevchenko, M Mann Protein Analysis by Mass Spectrometry, ed T E Creighton (IRL, Oxford), pp. 29–57 (1997a). / Protein Analysis by Mass Spectrometry by Jensen O N (1997)
  39. 10.1073/pnas.88.8.2974
  40. 10.1074/jbc.270.4.1734
  41. E Padrell, D J Carty, T M Moriarty, J D Hildebrandt, E M Landau, R Iyengar J Biol Chem 259, 13806–13813 (1991). / J Biol Chem by Padrell E (1991)
  42. 10.1111/j.1432-1033.1992.tb17461.x
  43. 10.1021/bi00418a062
  44. 10.1111/j.1432-1033.1989.tb21099.x
  45. 10.1016/0076-6879(91)95164-F
  46. J J Murtagh, R Eddy, T B Shows, J Moss, M Vaughan Mol Cell Biol 11, 1146–1155 (1991). / Mol Cell Biol by Murtagh J J (1991)
  47. 10.1073/pnas.87.10.3645
  48. 10.1038/27831
  49. 10.1146/annurev.biochem.66.1.639
  50. 10.1073/pnas.95.8.4270
  51. 10.1074/jbc.273.6.3247
  52. 10.1016/S0021-9258(17)36711-X
  53. 10.1126/science.3381086
  54. 10.1038/42743
  55. 10.1038/42735
  56. Anis Y. Nürnberg B. Reiss N. Naor Z. Visochek L. & Cohen-Armon M. (1999) J. Biol. Chem. in press.
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 10:39 a.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 5:58 p.m.)
Indexed 1 month, 4 weeks ago (July 2, 2025, 1:29 p.m.)
Issued 26 years, 6 months ago (Feb. 16, 1999)
Published 26 years, 6 months ago (Feb. 16, 1999)
Published Online 26 years, 6 months ago (Feb. 16, 1999)
Published Print 26 years, 6 months ago (Feb. 16, 1999)
Funders 0

None

@article{Exner_1999, title={Posttranslational modification of Gα o1 generates Gα o3 , an abundant G protein in brain}, volume={96}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.96.4.1327}, DOI={10.1073/pnas.96.4.1327}, number={4}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Exner, Torsten and Jensen, Ole N. and Mann, Matthias and Kleuss, Christiane and Nürnberg, Bernd}, year={1999}, month=feb, pages={1327–1332} }