Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Solvent plays a significant role in determining the electrostatic potential energy of proteins, most notably through its favorable interactions with charged residues and its screening of electrostatic interactions. These energetic contributions are frequently ignored in computational protein design and protein modeling methodologies because they are difficult to evaluate rapidly and accurately. To address this deficiency, we report a revised form of the original Tanford–Kirkwood continuum electrostatic model [Tanford, C. & Kirkwood, J. G. (1957) J. Am. Chem. Soc. 79, 5333–5339], which accounts for the effects of solvent polarization on charged atoms in proteins. The Tanford–Kirkwood model was modified to increase its speed and to improve its sensitivity to the details of protein structure. For the 37 electrostatic self-energies of the polar side-chains in bovine pancreatic trypsin inhibitor, and their 666 interaction energies, the modified Tanford–Kirkwood potential of mean force differs from a computationally intensive numerical potential (DelPhi) by root-mean-square errors of 0.6 kcal/mol and 0.08 kcal/mol, respectively. The Tanford–Kirkwood approach makes possible a realistic treatment of electrostatics in computationally demanding protein modeling calculations. For example, pH titration calculations for ovomucoid third domain that model polar side-chain relaxation (including >2 × 10 23 rotamer conformations of the protein) provide pKa values of unprecedented accuracy.

Bibliography

Havranek, J. J., & Harbury, P. B. (1999). Tanford–Kirkwood electrostatics for protein modeling. Proceedings of the National Academy of Sciences, 96(20), 11145–11150.

Authors 2
  1. James J. Havranek (first)
  2. Pehr B. Harbury (additional)
References 57 Referenced 101
  1. 10.1002/pro.5560041006
  2. 10.1126/science.278.5335.82
  3. 10.1021/jp971707j
  4. 10.1038/356539a0
  5. 10.1006/jmbi.1994.1198
  6. 10.1006/jmbi.1994.1366
  7. 10.1038/nsb0295-163
  8. 10.1021/ja00181a020
  9. 10.1126/science.282.5393.1462
  10. 10.1006/jmbi.1997.1341
  11. 10.1017/S0033583500005333
  12. M P Allen, D J Tildesley Computer Simulation of Liquids (Oxford Univ. Press, Oxford, 1989). / Computer Simulation of Liquids by Allen M P (1989)
  13. 10.1126/science.7761829
  14. 10.1021/ja00172a038
  15. 10.1021/ja01577a001
  16. 10.1063/1.1749489
  17. 10.1016/S0022-2836(99)80019-9
  18. 10.1021/jp9521621
  19. J D Jackson Classical Electrodynamics (Wiley, New York, 1975). / Classical Electrodynamics by Jackson J D (1975)
  20. 10.1080/00268977500101341
  21. 10.1006/jmbi.1994.1052
  22. 10.1016/0022-2836(85)90297-9
  23. 10.1002/(SICI)1096-987X(19960730)17:10<1229::AID-JCC4>3.0.CO;2-Q
  24. W H Press, S A Teukolsky, W T Vetterling, B P Flannery Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, New York, 1992). / Numerical Recipes in C: The Art of Scientific Computing by Press W H (1992)
  25. 10.1016/0022-2836(84)90231-6
  26. 10.1021/ja00291a006
  27. 10.1021/j100058a043
  28. 10.1107/S010876818300275X
  29. 10.1002/jcc.540120405
  30. 10.1006/jmbi.1994.1573
  31. 10.1002/j.1460-2075.1986.tb04521.x
  32. 10.1080/07391102.1991.10507882
  33. 10.1002/jcc.540040211
  34. 10.1016/S0006-3495(97)78851-9
  35. 10.1016/S0006-3495(95)80042-1
  36. 10.1021/j100176a093
  37. 10.1021/bi9601565
  38. 10.1021/bi00014a028
  39. 10.1021/bi00014a029
  40. 10.1002/prot.340150304
  41. 10.1002/prot.340150305
  42. 10.1016/S0006-3495(92)81697-1
  43. 10.1016/S0959-440X(98)80041-9
  44. 10.1021/jp9623709
  45. 10.1016/0022-2836(92)91009-E
  46. 10.1006/jmbi.1997.0895
  47. 10.1021/jp963412w
  48. 10.1016/S0006-3495(98)77885-3
  49. 10.1002/(SICI)1097-0134(19981101)33:2<145::AID-PROT1>3.0.CO;2-I
  50. 10.1021/bi960171
  51. 10.1002/pro.5560070617
  52. 10.1002/pro.5560030206
  53. 10.1126/science.8248779
  54. 10.1021/bi00027a013
  55. 10.1021/bi981269m
  56. 10.1073/pnas.94.8.3673
  57. Shan S. O. & Herschlag D. (1999) Methods Enzymol in press.
Dates
Type When
Created 23 years ago (July 26, 2002, 10:35 a.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 3:55 p.m.)
Indexed 10 months, 2 weeks ago (Oct. 5, 2024, 8:28 p.m.)
Issued 25 years, 10 months ago (Sept. 28, 1999)
Published 25 years, 10 months ago (Sept. 28, 1999)
Published Online 25 years, 10 months ago (Sept. 28, 1999)
Published Print 25 years, 10 months ago (Sept. 28, 1999)
Funders 0

None

@article{Havranek_1999, title={Tanford–Kirkwood electrostatics for protein modeling}, volume={96}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.96.20.11145}, DOI={10.1073/pnas.96.20.11145}, number={20}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Havranek, James J. and Harbury, Pehr B.}, year={1999}, month=sep, pages={11145–11150} }