Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Chaperone rings play a vital role in the opposing ATP-mediated processes of folding and degradation of many cellular proteins, but the mechanisms by which they assist these life and death actions are only beginning to be understood. Ring structures present an advantage to both processes, providing for compartmentalization of the substrate protein inside a central cavity in which multivalent, potentially cooperative interactions can take place between the substrate and a high local concentration of binding sites, while access of other proteins to the cavity is restricted sterically. Such restriction prevents outside interference that could lead to nonproductive fates of the substrate protein while it is present in non-native form, such as aggregation. At the step of recognition, chaperone rings recognize different motifs in their substrates, exposed hydrophobicity in the case of protein-folding chaperonins, and specific “tag” sequences in at least some cases of the proteolytic chaperones. For both folding and proteolytic complexes, ATP directs conformational changes in the chaperone rings that govern release of the bound polypeptide. In the case of chaperonins, ATP enables a released protein to pursue the native state in a sequestered hydrophilic folding chamber, and, in the case of the proteases, the released polypeptide is translocated into a degradation chamber. These divergent fates are at least partly governed by very different cooperating components that associate with the chaperone rings: that is, cochaperonin rings on one hand and proteolytic ring assemblies on the other. Here we review the structures and mechanisms of the two types of chaperone ring system.

Bibliography

Horwich, A. L., Weber-Ban, E. U., & Finley, D. (1999). Chaperone rings in protein folding and degradation. Proceedings of the National Academy of Sciences, 96(20), 11033–11040.

Authors 3
  1. Arthur L. Horwich (first)
  2. Eilika U. Weber-Ban (additional)
  3. Daniel Finley (additional)
References 80 Referenced 156
  1. 10.1016/S0092-8674(00)80929-0
  2. 10.1016/S0092-8674(00)80928-9
  3. 10.1038/41944
  4. 10.1016/S0092-8674(00)81152-6
  5. 10.1038/358249a0
  6. 10.1006/jsbi.1998.4039
  7. 10.1074/jbc.273.20.12476
  8. 10.1038/nsb0297-133
  9. 10.1016/S0021-9258(17)31904-X
  10. 10.1006/jsbi.1998.3958
  11. 10.1016/S0092-8674(00)80427-4
  12. 10.1002/bies.950170710
  13. 10.1038/nsb0296-170
  14. 10.1016/S0021-9258(18)68366-8
  15. 10.1038/331192a0
  16. 10.1016/S0021-9258(17)41897-7
  17. 10.1073/pnas.91.25.12218
  18. 10.1002/j.1460-2075.1995.tb07179.x
  19. 10.1101/gad.9.19.2399
  20. 10.1016/S0092-8674(00)81223-4
  21. 10.1101/gad.11.12.1561
  22. 10.1002/j.1460-2075.1996.tb00796.x
  23. 10.1016/S0092-8674(00)81271-4
  24. 10.1016/S0092-8674(00)80428-6
  25. 10.1016/S0968-0004(97)01020-7
  26. 10.1093/emboj/17.16.4837
  27. 10.1038/371578a0
  28. 10.1038/371261a0
  29. 10.1002/pro.5560060401
  30. 10.1038/42047
  31. 10.1016/S0092-8674(00)80431-6
  32. 10.1038/386463a0
  33. 10.1093/emboj/17.17.4909
  34. 10.1128/MCB.18.6.3149
  35. 10.1073/pnas.94.12.6070
  36. 10.1126/science.7725097
  37. 10.1016/S0092-8674(00)81603-7
  38. 10.1016/S0968-0004(97)01122-5
  39. 10.1074/jbc.270.14.8172
  40. 10.1016/S0021-9258(18)41573-6
  41. 10.1093/emboj/17.24.7151
  42. 10.1016/S0021-9258(17)37244-7
  43. 10.1128/MCB.16.11.6020
  44. 10.1074/jbc.273.4.1970
  45. 10.1074/jbc.270.16.9322
  46. 10.1126/science.271.5251.990
  47. 10.1101/gad.12.9.1338
  48. 10.1126/science.1962196
  49. 10.1016/S0092-8674(00)80485-7
  50. 10.1038/378085a0
  51. 10.1126/science.7569905
  52. 10.1016/S0092-8674(00)81307-0
  53. 10.1073/pnas.94.10.4901
  54. 10.1126/science.271.5249.642
  55. 10.1002/pro.5560051213
  56. 10.1073/pnas.94.4.1080
  57. 10.1073/pnas.93.18.9425
  58. 10.1016/0014-5793(91)80878-7
  59. 10.1016/S0021-9258(19)50496-3
  60. 10.1021/bi00061a013
  61. 10.1006/jmbi.1998.1704
  62. 10.1021/bi00016a001
  63. 10.1016/S0092-8674(00)80742-4
  64. 10.1006/jmbi.1997.1334
  65. 10.1021/bi973093e
  66. 10.1101/gad.11.7.815
  67. 10.1016/S0092-8674(94)90582-7
  68. 10.1021/bi981482i
  69. 10.1126/science.7638601
  70. 10.1038/383096a0
  71. 10.1016/S0092-8674(00)80278-0
  72. 10.1006/jmbi.1996.0815
  73. 10.1016/S0021-9258(17)31554-5
  74. 10.1016/S0092-8674(94)90482-0
  75. 10.1128/MCB.16.5.2248
  76. 10.1038/385737a0
  77. 10.1146/annurev.genet.30.1.405
  78. 10.1111/j.1432-1033.1980.tb06123.x
  79. Weber-Ban E. U. Reid B. G. Miranker A. D. & Horwich A. L. (1999) Nature (London) in press.
  80. 10.1126/science.284.5415.822
Dates
Type When
Created 23 years ago (July 26, 2002, 10:38 a.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 3:53 p.m.)
Indexed 2 weeks, 3 days ago (Aug. 5, 2025, 8:34 a.m.)
Issued 25 years, 10 months ago (Sept. 28, 1999)
Published 25 years, 10 months ago (Sept. 28, 1999)
Published Online 25 years, 10 months ago (Sept. 28, 1999)
Published Print 25 years, 10 months ago (Sept. 28, 1999)
Funders 0

None

@article{Horwich_1999, title={Chaperone rings in protein folding and degradation}, volume={96}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.96.20.11033}, DOI={10.1073/pnas.96.20.11033}, number={20}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Horwich, Arthur L. and Weber-Ban, Eilika U. and Finley, Daniel}, year={1999}, month=sep, pages={11033–11040} }