Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

The mechanism of the electron transfer reaction, Q A − ⋅ Q B → Q A Q B − ⋅ , was studied in isolated reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides by replacing the native Q 10 in the Q A binding site with quinones having different redox potentials. These substitutions are expected to change the intrinsic electron transfer rate by changing the redox free energy (i.e., driving force) for electron transfer without affecting other events that may be associated with the electron transfer (e.g., protein dynamics or protonation). The electron transfer from Q A − ⋅ to Q B was measured by three independent methods: a functional assay involving cytochrome c 2 to measure the rate of Q A − ⋅ oxidation, optical kinetic spectroscopy to measure changes in semiquinone absorption, and kinetic near-IR spectroscopy to measure electrochromic shifts that occur in response to electron transfer. The results show that the rate of the observed electron transfer from Q A − ⋅ to Q B does not change as the redox free energy for electron transfer is varied over a range of 150 meV. The strong temperature dependence of the observed rate rules out the possibility that the reaction is activationless. We conclude, therefore, that the independence of the observed rate on the driving force for electron transfer is due to conformational gating, that is, the rate limiting step is a conformational change required before electron transfer. This change is proposed to be the movement, controlled kinetically either by protein dynamics or intermolecular interactions, of Q B by ≈5 Å as observed in the x-ray studies of Stowell et al. [Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E. & Feher, G. (1997) Science 276, 812–816].

Bibliography

Graige, M. S., Feher, G., & Okamura, M. Y. (1998). Conformational gating of the electron transfer reaction Q A − ⋅ Q B → Q A Q B − ⋅ in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proceedings of the National Academy of Sciences, 95(20), 11679–11684.

Authors 3
  1. M. S. Graige (first)
  2. G. Feher (additional)
  3. M. Y. Okamura (additional)
References 49 Referenced 173
  1. 10.1017/CBO9781139167864
  2. 10.1021/ja00255a003
  3. 10.1038/339111a0
  4. 10.1146/annurev.bi.61.070192.004241
  5. V P Shinkarev, C A Wraight The Photosynthetic Reaction Center, eds J Deisenhofer, J R Norris (Academic, New York) 1, 193–255 (1993). (10.1016/B978-0-12-208661-8.50013-9) / The Photosynthetic Reaction Center by Shinkarev V P (1993)
  6. 10.1021/bi00319a017
  7. 10.1021/bi00356a064
  8. 10.1007/978-1-4615-3050-3_36
  9. 10.1021/bi9605907
  10. 10.1126/science.276.5313.812
  11. 10.1021/ja960056m
  12. M R Gunner, D M Tiede, R C Prince, P L Dutton Functions of Quinones in Energy Conserving Systems, ed B L Trumpower (Academic, New York), pp. 265–269 (1982). (10.1016/B978-0-12-701280-3.50024-4) / Functions of Quinones in Energy Conserving Systems by Gunner M R (1982)
  13. 10.1016/0301-0104(95)00165-K
  14. M S Graige, M L Paddock, G Feher, M Y Okamura Biophys J 70, A11 (1996). / Biophys J by Graige M S (1996)
  15. 10.1007/BF00047682
  16. 10.1073/pnas.72.9.3491
  17. 10.1107/S0907444994001319
  18. M Y Okamura, R J Debus, D Kleinfeld, G Feher Functions of Quinones in Energy Conserving Systems, ed B L Trumpower (Academic, New York), pp. 299–317 (1982). (10.1016/B978-0-12-701280-3.50028-1) / Functions of Quinones in Energy Conserving Systems by Okamura M Y (1982)
  19. 10.1016/0005-2728(84)90224-X
  20. 10.1016/0005-2728(77)90050-0
  21. 10.1016/0005-2728(85)90242-7
  22. 10.1016/0005-2728(69)90169-8
  23. 10.1016/0005-2728(86)90243-4
  24. 10.1021/ja00191a043
  25. 10.1016/0005-2728(77)90078-0
  26. 10.1038/336182a0
  27. 10.1016/0005-2728(79)90138-5
  28. 10.1016/0304-4173(85)90014-X
  29. 10.1016/0005-2728(84)90139-7
  30. 10.1021/bi971699x
  31. 10.1023/A:1005977901937
  32. 10.1021/bi00171a018
  33. C C Page, R S Farid, C C Moser, P L Dutton Biophys J 70, A343 (1996). / Biophys J by Page C C (1996)
  34. 10.1016/S0021-9258(19)44350-0
  35. 10.1073/pnas.81.9.2606
  36. 10.1016/S0006-3495(97)78077-9
  37. 10.1016/S0006-3495(98)77964-0
  38. 10.1021/bi980395n
  39. 10.1016/S0006-3495(80)85030-2
  40. 10.1038/nsb1295-1057
  41. 10.1021/bi961299u
  42. 10.1016/S0006-3495(95)80406-6
  43. 10.1016/S0006-3495(96)79820-X
  44. 10.1016/0005-2728(90)90227-U
  45. 10.1021/bi00140a016
  46. 10.1038/322286a0
  47. 10.1021/bi00236a030
  48. 10.1126/science.277.5322.60
  49. 10.1038/33612
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 10:42 a.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 4:59 p.m.)
Indexed 3 weeks, 3 days ago (Aug. 6, 2025, 9:17 a.m.)
Issued 26 years, 11 months ago (Sept. 29, 1998)
Published 26 years, 11 months ago (Sept. 29, 1998)
Published Online 26 years, 11 months ago (Sept. 29, 1998)
Published Print 26 years, 11 months ago (Sept. 29, 1998)
Funders 0

None

@article{Graige_1998, title={Conformational gating of the electron transfer reaction Q A − ⋅ Q B → Q A Q B − ⋅ in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay}, volume={95}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.95.20.11679}, DOI={10.1073/pnas.95.20.11679}, number={20}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Graige, M. S. and Feher, G. and Okamura, M. Y.}, year={1998}, month=sep, pages={11679–11684} }