Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

High-temperature origin-of-life theories require that the components of the first genetic material are stable. We therefore have measured the half-lives for the decomposition of the nucleobases. They have been found to be short on the geologic time scale. At 100°C, the growth temperatures of the hyperthermophiles, the half-lives are too short to allow for the adequate accumulation of these compounds ( t 1/2 for A and G ≈ 1 yr; U = 12 yr; C = 19 days). Therefore, unless the origin of life took place extremely rapidly (<100 yr), we conclude that a high-temperature origin of life may be possible, but it cannot involve adenine, uracil, guanine, or cytosine. The rates of hydrolysis at 100°C also suggest that an ocean-boiling asteroid impact would reset the prebiotic clock, requiring prebiotic synthetic processes to begin again. At 0°C, A, U, G, and T appear to be sufficiently stable ( t 1/2 ≥ 10 6 yr) to be involved in a low-temperature origin of life. However, the lack of stability of cytosine at 0°C ( t 1/2 = 17,000 yr) raises the possibility that the GC base pair may not have been used in the first genetic material unless life arose quickly (<10 6 yr) after a sterilization event. A two-letter code or an alternative base pair may have been used instead.

Bibliography

Levy, M., & Miller, S. L. (1998). The stability of the RNA bases: Implications for the origin of life. Proceedings of the National Academy of Sciences, 95(14), 7933–7938.

Authors 2
  1. Matthew Levy (first)
  2. Stanley L. Miller (additional)
References 68 Referenced 252
  1. 10.1128/mr.51.2.221-271.1987
  2. 10.1038/336117a0
  3. C R Woese, G Wächtershäuser Palaeobiology: A Synthesis, eds D E G Briggs, P R Crowther (Blackwell, Oxford), pp. 3–9 (1990). / Palaeobiology: A Synthesis by Woese C R (1990)
  4. 10.1016/0092-8674(91)90082-A
  5. 10.2307/1312047
  6. 10.1007/BF00160147
  7. K O Stetter Evolution of Hydrothermal Ecosystems on Earth (and Mars?), eds G R Brock, J A Goode (Wiley, Chichester, U.K.), pp. 1–10 (1996). / Evolution of Hydrothermal Ecosystems on Earth (and Mars?) by Stetter K O (1996)
  8. 10.1007/BF00173146
  9. 10.1073/pnas.92.7.2421
  10. 10.1007/BF01581587
  11. 10.1007/BF01581588
  12. 10.1126/science.11539665
  13. 10.1126/science.11536547
  14. Corliss J. B. Baross J. A. & Hoffman S. E. (1981) Oceanologica Acta 4 Suppl. 59–69.
  15. 10.1007/BF01808115
  16. 10.1007/BF01808015
  17. E L Shock Evolution of Hydrothermal Ecosystems on Earth (and Mars?), eds G R Brock, J A Goode (Wiley, Chichester, U.K.), pp. 40–60 (1996). / Evolution of Hydrothermal Ecosystems on Earth (and Mars?) by Shock E L (1996)
  18. 10.1144/gsjgs.154.3.0377
  19. 10.1007/BF01189186
  20. 10.1038/310430a0
  21. 10.1038/334609a0
  22. 10.1007/BF01581577
  23. 10.1038/362709a0
  24. R A Robinson, R H Stokes Electrolyte Solutions (Butterworth, London), pp. 517–540 (1959). / Electrolyte Solutions by Robinson R A (1959)
  25. 10.1007/BF01581575
  26. 10.1016/0045-2068(87)90011-3
  27. 10.1007/BF02459733
  28. 10.1002/jps.2600610703
  29. 10.1038/297187a0
  30. 10.1007/BF02386466
  31. 10.1007/BF00160399
  32. R Sanchez, J Ferris, L E Orgel J Mol Biol 30, 223–253 (1967). / J Mol Biol by Sanchez R (1967)
  33. 10.1126/science.153.3731.72
  34. 10.1002/jps.2600590103
  35. Y Taniguchi High Pressure Chemical Synthesis, eds J Jurczak, B Baranowski (Elsevier, Amsterdam), pp. 349–373 (1989). / High Pressure Chemical Synthesis by Taniguchi Y (1989)
  36. T Asano Organic Synthesis at High Pressure, eds K Matsumoto, R M Acheson (Wiley Interscience, New York), pp. 7–75 (1990). / Organic Synthesis at High Pressure by Asano T (1990)
  37. 10.1021/ja00705a626
  38. 10.1016/S0079-6603(08)60756-4
  39. 10.1007/BF01131486
  40. 10.2343/geochemj.22.143
  41. 10.1016/0009-2541(77)90022-5
  42. 10.1016/0009-2541(76)90010-3
  43. 10.1126/science.146.3652.1680
  44. 10.1016/0016-7037(64)90139-5
  45. 10.1021/bi00871a026
  46. 10.1016/0022-2836(68)90314-8
  47. 10.1021/bi00713a035
  48. S L Miller, L E Orgel The Origins of Life on Earth (Prentice Hall, Englewood Cliffs, NJ), pp. 123–124 (1974). / The Origins of Life on Earth by Miller S L (1974)
  49. 10.1038/282709a0
  50. 10.1016/0016-7037(81)90189-7
  51. W Saenger Principles of Nucleic Acid Structure (Springer, New York), pp. 110–115 (1984). (10.1007/978-1-4612-5190-3) / Principles of Nucleic Acid Structure by Saenger W (1984)
  52. 10.1021/bi00462a015
  53. A Rich Horizons in Biochemistry, eds M Kasha, B Pullman (Academic, New York), pp. 103–126 (1962). / Horizons in Biochemistry by Rich A (1962)
  54. 10.1016/0022-2836(68)90392-6
  55. 10.1007/BF01116426
  56. 10.1038/343033a0
  57. 10.1007/BF00175873
  58. 10.1073/pnas.85.4.1134
  59. G Zubay Chemtracts 2, 439–449 (1991). / Chemtracts by Zubay G (1991)
  60. 10.1039/cs9922100001
  61. 10.1007/BF02202102
  62. 10.1126/science.177.4043.56
  63. 10.1073/pnas.91.4.1248
  64. 10.1038/331612a0
  65. 10.1038/342139a0
  66. 10.1007/978-1-4757-2688-6_8
  67. 10.1073/pnas.92.18.8158
  68. 10.1021/ja00779a041
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 10:32 a.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 4:40 p.m.)
Indexed 3 weeks, 4 days ago (Aug. 7, 2025, 4:51 a.m.)
Issued 27 years, 1 month ago (July 7, 1998)
Published 27 years, 1 month ago (July 7, 1998)
Published Online 27 years, 1 month ago (July 7, 1998)
Published Print 27 years, 1 month ago (July 7, 1998)
Funders 0

None

@article{Levy_1998, title={The stability of the RNA bases: Implications for the origin of life}, volume={95}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.95.14.7933}, DOI={10.1073/pnas.95.14.7933}, number={14}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Levy, Matthew and Miller, Stanley L.}, year={1998}, month=jul, pages={7933–7938} }