Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Whenever experimental data can be simulated according to a model of the physical process, values of physical parameters in the model can be determined from experimental data by use of a nonlinear least-squares algorithm. We have used this principle to obtain a general procedure for evaluating molecular parameters of solutes redistributing in the ultracentrifuge that uses time-dependent concentration, concentration-difference, or concentration-gradient data. The method gives the parameter values that minimize the sum of the squared differences between experimental data and simulated data calculated from numerical solutions to the differential equation of the ultracentrifuge.

Bibliography

Todd, G. P., & Haschemeyer, R. H. (1981). General solution to the inverse problem of the differential equation of the ultracentrifuge. Proceedings of the National Academy of Sciences, 78(11), 6739–6743.

Authors 2
  1. G P Todd (first)
  2. R H Haschemeyer (additional)
References 0 Referenced 36

None

Dates
Type When
Created 19 years, 3 months ago (May 31, 2006, 4:36 a.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 11:25 a.m.)
Indexed 2 weeks ago (Aug. 21, 2025, 1:13 p.m.)
Issued 43 years, 10 months ago (Nov. 1, 1981)
Published 43 years, 10 months ago (Nov. 1, 1981)
Published Online 43 years, 10 months ago (Nov. 1, 1981)
Published Print 43 years, 10 months ago (Nov. 1, 1981)
Funders 0

None

@article{Todd_1981, title={General solution to the inverse problem of the differential equation of the ultracentrifuge.}, volume={78}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.78.11.6739}, DOI={10.1073/pnas.78.11.6739}, number={11}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Todd, G P and Haschemeyer, R H}, year={1981}, month=nov, pages={6739–6743} }