Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Near the 100th anniversary of the discovery of ferroelectricity, so-called sliding ferroelectricity has been proposed and confirmed recently in a series of experiments that have stimulated remarkable interest. Such ferroelectricity exists widely and exists only in two-dimensional (2D) van der Waals stacked layers, where the vertical electric polarization is switched by in-plane interlayer sliding. Reciprocally, interlayer sliding and the “ripplocation” domain wall can be driven by an external vertical electric field. The unique combination of intralayer stiffness and interlayer slipperiness of 2D van der Waals layers greatly facilitates such switching while still maintaining environmental and mechanical robustness at ambient conditions. In this perspective, we discuss the progress and future opportunities in this behavior. The origin of such ferroelectricity as well as a general rule for judging its existence are summarized, where the vertical stacking sequence is crucial for its formation. This discovery broadens 2D ferroelectrics from very few material candidates to most of the known 2D materials. Their low switching barriers enable high-speed data writing with low energy cost. Related physics like Moiré ferroelectricity, the ferroelectric nonlinear anomalous Hall effect, and multiferroic coupling are discussed. For 2D valleytronics, nontrivial band topology and superconductivity, their possible couplings with sliding ferroelectricity via certain stacking or Moiré ferroelectricity also deserve interest. We provide critical reviews on the current challenges in this emerging area.

Bibliography

Wu, M., & Li, J. (2021). Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities. Proceedings of the National Academy of Sciences, 118(50).

Authors 2
  1. Menghao Wu (first)
  2. Ju Li (additional)
References 60 Referenced 215
  1. 10.1038/s41928-020-00492-7
  2. 10.1038/s42254-021-00383-6
  3. 10.1103/PhysRevB.87.081406
  4. 10.1002/wcms.1365
  5. 10.1021/acsnano.0c08483
  6. 10.1038/nnano.2014.35
  7. 10.1038/nnano.2010.279
  8. 10.1038/nnano.2016.242
  9. 10.1021/jacs.9b03201
  10. Q. Yang , Design of single-molecule multiferroics for efficient ultrahigh-density nonvolatile memories. Adv. Sci. (Weinh.) 6, 1801572 (2018). / Adv. Sci. (Weinh.) / Design of single-molecule multiferroics for efficient ultrahigh-density nonvolatile memories by Yang Q. (2018)
  11. 10.1021/acs.nanolett.6b00726
  12. 10.1126/science.aad8609
  13. 10.1021/acs.nanolett.0c02357
  14. 10.1038/s41467-020-16291-9
  15. 10.1038/ncomms12357
  16. 10.1021/acs.nanolett.5b00491
  17. 10.1126/sciadv.aar7720
  18. 10.1021/acs.nanolett.7b02198
  19. 10.1038/ncomms14956
  20. 10.1038/s41467-019-09669-x
  21. 10.1021/acsnano.7b02756
  22. 10.1021/acs.jpclett.8b03654
  23. 10.1038/nmat4742
  24. 10.1021/jp210536m
  25. 10.1103/PhysRevLett.99.026102
  26. 10.1016/j.nanoen.2019.104276
  27. 10.1063/1.4959026
  28. 10.1126/science.aav1937
  29. 10.1038/s41578-021-00304-0
  30. 10.1557/mrs2007.48
  31. 10.1021/nl5045082
  32. 10.1021/acs.nanolett.8b03559
  33. 10.1038/s41586-018-0336-3
  34. 10.1126/sciadv.aax5080
  35. 10.1038/s41567-020-0947-0
  36. 10.1126/science.abd3230
  37. 10.1126/science.abe8177
  38. 10.1063/1.5097842
  39. X. Wang Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. arXiv [Preprint] (2021). https://arxiv.org/abs/2108.07659 (Accessed 17 August 2021).
  40. 10.1038/s41467-020-20667-2
  41. 10.1039/D1TA02645C
  42. 10.1088/2053-1583/abdd92
  43. 10.1038/nature26154
  44. 10.1038/nature26160
  45. 10.1021/nl502414t
  46. 10.1088/2053-1583/abd006
  47. 10.1038/s41586-020-2970-9
  48. 10.1093/nsr/nwz091
  49. 10.1103/PhysRevLett.125.247601
  50. 10.1088/1361-6463/abcc25
  51. 10.1021/acs.nanolett.0c04531
  52. 10.1103/PhysRevLett.14.217
  53. 10.1038/nmat3754
  54. 10.1038/s41524-019-0257-1
  55. 10.1063/1.1381542
  56. 10.1103/PhysRevB.74.224412
  57. 10.1007/s12274-019-2500-y
  58. 10.1038/s41598-019-50293-y
  59. 10.1016/j.ijplas.2016.01.019
  60. 10.1103/PhysRevMaterials.5.084405
Dates
Type When
Created 3 years, 8 months ago (Dec. 3, 2021, 5:05 p.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 8:03 a.m.)
Indexed 13 hours, 49 minutes ago (Aug. 24, 2025, 6:48 p.m.)
Issued 3 years, 8 months ago (Dec. 3, 2021)
Published 3 years, 8 months ago (Dec. 3, 2021)
Published Online 3 years, 8 months ago (Dec. 3, 2021)
Published Print 3 years, 8 months ago (Dec. 14, 2021)
Funders 2
  1. National Natural Science Foundation of China 10.13039/501100001809

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards1
    1. 22073034
  2. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DMR-1923976

@article{Wu_2021, title={Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities}, volume={118}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.2115703118}, DOI={10.1073/pnas.2115703118}, number={50}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Wu, Menghao and Li, Ju}, year={2021}, month=dec }