Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

For nearly 100 y, homochiral ferroelectrics were basically multicomponent simple organic amine salts and metal coordination compounds. Single-component homochiral organic ferroelectric crystals with high-Curie temperature ( T c ) phase transition were very rarely reported, although the first ferroelectric Rochelle salt discovered in 1920 is a homochiral metal coordination compound. Here, we report a pair of single-component organic enantiomorphic ferroelectrics, ( R )-3-quinuclidinol and ( S )-3-quinuclidinol, as well as the racemic mixture ( Rac )-3-quinuclidinol. The homochiral ( R )- and ( S )-3-quinuclidinol crystallize in the enantiomorphic-polar point group 6 ( C 6 ) at room temperature, showing mirror-image relationships in vibrational circular dichroism spectra and crystal structure. Both enantiomers exhibit 622 F 6-type ferroelectric phase transition with as high as 400 K [above that of BaTiO 3 ( T c = 381 K)], showing very similar ferroelectricity and related properties, including sharp step-like dielectric anomaly from 5 to 17, high saturation polarization (7 μC/cm 2 ), low coercive field (15 kV/cm), and identical ferroelectric domains. Their racemic mixture ( Rac )-3-quinuclidinol, however, adopts a centrosymmetric point group 2/ m ( C 2h ), undergoing a nonferroelectric high-temperature phase transition. This finding reveals the enormous benefits of homochirality in designing high- T c ferroelectrics, and sheds light on exploring homochiral ferroelectrics with great application.

Bibliography

Li, P.-F., Liao, W.-Q., Tang, Y.-Y., Qiao, W., Zhao, D., Ai, Y., Yao, Y.-F., & Xiong, R.-G. (2019). Organic enantiomeric high- T c ferroelectrics. Proceedings of the National Academy of Sciences, 116(13), 5878–5885.

Authors 8
  1. Peng-Fei Li (first)
  2. Wei-Qiang Liao (additional)
  3. Yuan-Yuan Tang (additional)
  4. Wencheng Qiao (additional)
  5. Dewei Zhao (additional)
  6. Yong Ai (additional)
  7. Ye-Feng Yao (additional)
  8. Ren-Gen Xiong (additional)
References 48 Referenced 175
  1. GH Wagnière On Chirality and the Universal Asymmetry (Wiley-VCH, Weinheim, Germany, 2007). (10.1002/9783906390598) / On Chirality and the Universal Asymmetry by Wagnière GH (2007)
  2. JS Siegel, Biochemistry. Single-handed cooperation. Nature 409, 777–778 (2001). (10.1038/35057421) / Nature / Biochemistry. Single-handed cooperation by Siegel JS (2001)
  3. J Ellis, Particle physics: Antimatter matters. Nature 424, 631–634 (2003). (10.1038/424631a) / Nature / Particle physics: Antimatter matters by Ellis J (2003)
  4. A Kumar, , Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. Proc Natl Acad Sci USA 114, 2474–2478 (2017). (10.1073/pnas.1611467114) / Proc Natl Acad Sci USA / Chirality-induced spin polarization places symmetry constraints on biomolecular interactions by Kumar A (2017)
  5. R Rai, BP Krishnan, KM Sureshan, Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction. Proc Natl Acad Sci USA 115, 2896–2901 (2018). (10.1073/pnas.1718965115) / Proc Natl Acad Sci USA / Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction by Rai R (2018)
  6. P Lodahl, , Chiral quantum optics. Nature 541, 473–480 (2017). (10.1038/nature21037) / Nature / Chiral quantum optics by Lodahl P (2017)
  7. S Fireman-Shoresh, I Popov, D Avnir, S Marx, Enantioselective, chirally templated sol-gel thin films. J Am Chem Soc 127, 2650–2655 (2005). (10.1021/ja0454384) / J Am Chem Soc / Enantioselective, chirally templated sol-gel thin films by Fireman-Shoresh S (2005)
  8. I Hodgkinson, QH Wu, Inorganic chiral optical materials. Adv Mater 13, 889–897 (2001). (10.1002/1521-4095(200107)13:12/13<889::AID-ADMA889>3.0.CO;2-K) / Adv Mater / Inorganic chiral optical materials by Hodgkinson I (2001)
  9. Y Wang, J Xu, Y Wang, H Chen, Emerging chirality in nanoscience. Chem Soc Rev 42, 2930–2962 (2013). (10.1039/C2CS35332F) / Chem Soc Rev / Emerging chirality in nanoscience by Wang Y (2013)
  10. L Torsi, , A sensitivity-enhanced field-effect chiral sensor. Nat Mater 7, 412–417 (2008). (10.1038/nmat2167) / Nat Mater / A sensitivity-enhanced field-effect chiral sensor by Torsi L (2008)
  11. M Liu, L Zhang, T Wang, Supramolecular chirality in self-assembled systems. Chem Rev 115, 7304–7397 (2015). (10.1021/cr500671p) / Chem Rev / Supramolecular chirality in self-assembled systems by Liu M (2015)
  12. S Ohkoshi, , 90-degree optical switching of output second harmonic light in chiral photomagnet. Nat Photonics 8, 65–71 (2014). (10.1038/nphoton.2013.310) / Nat Photonics / 90-degree optical switching of output second harmonic light in chiral photomagnet by Ohkoshi S (2014)
  13. Y Yang, RC da Costa, MJ Fuchter, AJ Campbell, Circularly polarized light detection by a chiral organic semiconductor transistor. Nat Photonics 7, 634–638 (2013). (10.1038/nphoton.2013.176) / Nat Photonics / Circularly polarized light detection by a chiral organic semiconductor transistor by Yang Y (2013)
  14. M Bode, , Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007). (10.1038/nature05802) / Nature / Chiral magnetic order at surfaces driven by inversion asymmetry by Bode M (2007)
  15. Q Li, , Chiral magnetic effect in ZrTe5. Nat Phys 12, 550–554 (2016). (10.1038/nphys3648) / Nat Phys / Chiral magnetic effect in ZrTe5 by Li Q (2016)
  16. S Zhang, , Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet. Proc Natl Acad Sci USA 115, 6386–6391 (2018). (10.1073/pnas.1803367115) / Proc Natl Acad Sci USA / Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet by Zhang S (2018)
  17. R Nandkishore, LS Levitov, AV Chubukov, Chiral superconductivity from repulsive interactions in doped graphene. Nat Phys 8, 158–163 (2012). (10.1038/nphys2208) / Nat Phys / Chiral superconductivity from repulsive interactions in doped graphene by Nandkishore R (2012)
  18. H Zhu, , Observation of chiral phonons. Science 359, 579–582 (2018). (10.1126/science.aar2711) / Science / Observation of chiral phonons by Zhu H (2018)
  19. Q Chen, , Structure and structural transition of chiral domains in oligo(p-phenylenevinylene) assembly investigated by scanning tunneling microscopy. Proc Natl Acad Sci USA 107, 2769–2774 (2010). (10.1073/pnas.1000120107) / Proc Natl Acad Sci USA / Structure and structural transition of chiral domains in oligo(p-phenylenevinylene) assembly investigated by scanning tunneling microscopy by Chen Q (2010)
  20. KE Shopsowitz, H Qi, WY Hamad, MJ Maclachlan, Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010). (10.1038/nature09540) / Nature / Free-standing mesoporous silica films with tunable chiral nematic structures by Shopsowitz KE (2010)
  21. J Yeom, , Chiral templating of self-assembling nanostructures by circularly polarized light. Nat Mater 14, 66–72 (2015). (10.1038/nmat4125) / Nat Mater / Chiral templating of self-assembling nanostructures by circularly polarized light by Yeom J (2015)
  22. J Valasek, Piezo-electric and allied phenomena in Rochelle salt. Phys Rev 17, 475–481 (1921). (10.1103/PhysRev.17.475) / Phys Rev / Piezo-electric and allied phenomena in Rochelle salt by Valasek J (1921)
  23. JF Scott, Applications of modern ferroelectrics. Science 315, 954–959 (2007). (10.1126/science.1129564) / Science / Applications of modern ferroelectrics by Scott JF (2007)
  24. D Kim, , Electron-hole separation in ferroelectric oxides for efficient photovoltaic responses. Proc Natl Acad Sci USA 115, 6566–6571 (2018). (10.1073/pnas.1721503115) / Proc Natl Acad Sci USA / Electron-hole separation in ferroelectric oxides for efficient photovoltaic responses by Kim D (2018)
  25. PP Shi, , Symmetry breaking in molecular ferroelectrics. Chem Soc Rev 45, 3811–3827 (2016). (10.1039/C5CS00308C) / Chem Soc Rev / Symmetry breaking in molecular ferroelectrics by Shi PP (2016)
  26. K Aizu, Possible species of ferroelastic crystals and of simultaneously ferroelectric and ferroelastic crystals. J Phys Soc Jpn 27, 387–396 (1969). (10.1143/JPSJ.27.387) / J Phys Soc Jpn / Possible species of ferroelastic crystals and of simultaneously ferroelectric and ferroelastic crystals by Aizu K (1969)
  27. DW Fu, , Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science 339, 425–428 (2013). (10.1126/science.1229675) / Science / Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal by Fu DW (2013)
  28. YM You, , An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309 (2017). (10.1126/science.aai8535) / Science / An organic-inorganic perovskite ferroelectric with large piezoelectric response by You YM (2017)
  29. HY Ye, , Metal-free three-dimensional perovskite ferroelectrics. Science 361, 151–155 (2018). (10.1126/science.aas9330) / Science / Metal-free three-dimensional perovskite ferroelectrics by Ye HY (2018)
  30. YY Tang, , Multiaxial molecular ferroelectric thin films bring light to practical applications. J Am Chem Soc 140, 8051–8059 (2018). (10.1021/jacs.8b04600) / J Am Chem Soc / Multiaxial molecular ferroelectric thin films bring light to practical applications by Tang YY (2018)
  31. Y Liu, , Ferroelectric switching of elastin. Proc Natl Acad Sci USA 111, E2780–E2786 (2014). / Proc Natl Acad Sci USA / Ferroelectric switching of elastin by Liu Y (2014)
  32. T Besara, , Mechanism of the order–disorder phase transition, and glassy behavior in the metal-organic framework [(CH3)2NH2]Zn(HCOO)3. Proc Natl Acad Sci USA 108, 6828–6832 (2011). (10.1073/pnas.1102079108) / Proc Natl Acad Sci USA / Mechanism of the order–disorder phase transition, and glassy behavior in the metal-organic framework [(CH3)2NH2]Zn(HCOO)3 by Besara T (2011)
  33. P Jain, NS Dalal, BH Toby, HW Kroto, AK Cheetham, Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. J Am Chem Soc 130, 10450–10451 (2008). (10.1021/ja801952e) / J Am Chem Soc / Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture by Jain P (2008)
  34. P Jain, , Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. J Am Chem Soc 131, 13625–13627 (2009). (10.1021/ja904156s) / J Am Chem Soc / Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture by Jain P (2009)
  35. N Abhyankar, , Understanding ferroelectricity in the Pb-free perovskite-like metal–Organic framework [(CH3)2NH2]Zn(HCOO)3: Dielectric, 2D NMR, and theoretical studies. J Phys Chem C 121, 6314–6322 (2017). (10.1021/acs.jpcc.7b00596) / J Phys Chem C / Understanding ferroelectricity in the Pb-free perovskite-like metal–Organic framework [(CH3)2NH2]Zn(HCOO)3: Dielectric, 2D NMR, and theoretical studies by Abhyankar N (2017)
  36. HX Zhao, , Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture. Proc Natl Acad Sci USA 108, 3481–3486 (2011). (10.1073/pnas.1010310108) / Proc Natl Acad Sci USA / Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture by Zhao HX (2011)
  37. Z Sun, T Chen, J Luo, M Hong, Bis(imidazolium) L-tartrate: A hydrogen-bonded displacive-type molecular ferroelectric material. Angew Chem Int Ed Engl 51, 3871–3876 (2012). (10.1002/anie.201200407) / Angew Chem Int Ed Engl / Bis(imidazolium) L-tartrate: A hydrogen-bonded displacive-type molecular ferroelectric material by Sun Z (2012)
  38. PF Li, , Anomalously rotary polarization discovered in homochiral organic ferroelectrics. Nat Commun 7, 13635 (2016). (10.1038/ncomms13635) / Nat Commun / Anomalously rotary polarization discovered in homochiral organic ferroelectrics by Li PF (2016)
  39. HY Ye, , Molecule-displacive ferroelectricity in organic supramolecular solids. Sci Rep 3, 2249 (2013). (10.1038/srep02249) / Sci Rep / Molecule-displacive ferroelectricity in organic supramolecular solids by Ye HY (2013)
  40. S Horiuchi, Y Tokura, Organic ferroelectrics. Nat Mater 7, 357–366 (2008). (10.1038/nmat2137) / Nat Mater / Organic ferroelectrics by Horiuchi S (2008)
  41. Q Pan, , A three-dimensional molecular perovskite ferroelectric: (3-ammoniopyrrolidinium)RbBr3. J Am Chem Soc 139, 3954–3957 (2017). (10.1021/jacs.7b00492) / J Am Chem Soc / A three-dimensional molecular perovskite ferroelectric: (3-ammoniopyrrolidinium)RbBr3 by Pan Q (2017)
  42. DA Kleinmann, Nonlinear dielectric polarization in optical media. Phys Rev 126, 1977–1979 (1962). (10.1103/PhysRev.126.1977) / Phys Rev / Nonlinear dielectric polarization in optical media by Kleinmann DA (1962)
  43. D Lee, , Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015). (10.1126/science.aaa6442) / Science / Emergence of room-temperature ferroelectricity at reduced dimensions by Lee D (2015)
  44. DA Bonnel, SV Kalinin, A Kholkin, A Gruverman, Piezoresponse force microscopy: A window into electromechanical behavior at the nanoscale. MRS Bull 34, 648–657 (2009). (10.1557/mrs2009.176) / MRS Bull / Piezoresponse force microscopy: A window into electromechanical behavior at the nanoscale by Bonnel DA (2009)
  45. RD King-Smith, D Vanderbilt, Theory of polarization of crystalline solids. Phys Rev B Condens Matter 47, 1651–1654 (1993). (10.1103/PhysRevB.47.1651) / Phys Rev B Condens Matter / Theory of polarization of crystalline solids by King-Smith RD (1993)
  46. G Kresse, J Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput Mater Sci / Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set by Kresse G (1996)
  47. G Kresse, J Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys Rev B Condens Matter / Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set by Kresse G (1996)
  48. JP Perdew, K Burke, M Ernzerhof, Generalized gradient approximation made simple. Phys Rev Lett 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys Rev Lett / Generalized gradient approximation made simple by Perdew JP (1996)
Dates
Type When
Created 6 years, 5 months ago (March 8, 2019, 8:36 p.m.)
Deposited 3 years, 2 months ago (June 7, 2022, 3:07 p.m.)
Indexed 6 days, 10 hours ago (Aug. 21, 2025, 2:19 p.m.)
Issued 6 years, 5 months ago (March 8, 2019)
Published 6 years, 5 months ago (March 8, 2019)
Published Online 6 years, 5 months ago (March 8, 2019)
Published Print 6 years, 5 months ago (March 26, 2019)
Funders 4
  1. National Natural Science Foundation of China 10.13039/501100001809

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards1
    1. 21427801
  2. National Natural Science Foundation of China 10.13039/501100001809

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards1
    1. 21831004
  3. National Natural Science Foundation of China 10.13039/501100001809

    Region: Asia

    gov (National government)

    Labels11
    1. Chinese National Science Foundation
    2. Natural Science Foundation of China
    3. National Science Foundation of China
    4. NNSF of China
    5. NSF of China
    6. 国家自然科学基金委员会
    7. National Nature Science Foundation of China
    8. Guójiā Zìrán Kēxué Jījīn Wěiyuánhuì
    9. NSFC
    10. NNSF
    11. NNSFC
    Awards1
    1. 91856114
  4. Young Elite Scientists Sponsorship Program By CAST
    Awards1
    1. 2018QNRC001

@article{Li_2019, title={Organic enantiomeric high- T c ferroelectrics}, volume={116}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1817866116}, DOI={10.1073/pnas.1817866116}, number={13}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Li, Peng-Fei and Liao, Wei-Qiang and Tang, Yuan-Yuan and Qiao, Wencheng and Zhao, Dewei and Ai, Yong and Yao, Ye-Feng and Xiong, Ren-Gen}, year={2019}, month=mar, pages={5878–5885} }