Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Significance To our knowledge, this is the first detailed study of Golgi ultrastructure within unperturbed cells. Three intracisternal structures were identified, with implications for Golgi architecture and trafficking: ( i ) Bundles of filaments show how cargoes may oligomerize to increase their local concentration at trans-Golgi buds. ( ii ) Granular aggregates provide evidence for cisternal maturation, as they are likely too large to transit the Golgi via vesicles. ( iii ) Protein arrays link the membranes of the central trans-Golgi cisternae, simultaneously maintaining the narrow luminal spacing while promoting cargo exit from the Golgi periphery by excluding material from the center. The asymmetry of the array structure indicates that the apposing membranes of a single cisterna have distinct compositions. The assembly of arrays may also enhance glycosyltransferase kinetics.

Bibliography

Engel, B. D., Schaffer, M., Albert, S., Asano, S., Plitzko, J. M., & Baumeister, W. (2015). In situ structural analysis of Golgi intracisternal protein arrays. Proceedings of the National Academy of Sciences, 112(36), 11264–11269.

Authors 6
  1. Benjamin D. Engel (first)
  2. Miroslava Schaffer (additional)
  3. Sahradha Albert (additional)
  4. Shoh Asano (additional)
  5. Jürgen M. Plitzko (additional)
  6. Wolfgang Baumeister (additional)
References 80 Referenced 105
  1. O Medalia, , Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002). (10.1126/science.1076184) / Science / Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography by Medalia O (2002)
  2. A Leforestier, N Lemercier, F Livolant, Contribution of cryoelectron microscopy of vitreous sections to the understanding of biological membrane structure. Proc Natl Acad Sci USA 109, 8959–8964 (2012). (10.1073/pnas.1200881109) / Proc Natl Acad Sci USA / Contribution of cryoelectron microscopy of vitreous sections to the understanding of biological membrane structure by Leforestier A (2012)
  3. BD Engel, , Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4, e04889 (2015). (10.7554/eLife.04889) / eLife / Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography by Engel BD (2015)
  4. S Asano, , Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347, 439–442 (2015). (10.1126/science.1261197) / Science / Proteasomes. A molecular census of 26S proteasomes in intact neurons by Asano S (2015)
  5. M Marko, C Hsieh, R Schalek, J Frank, C Mannella, Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat Methods 4, 215–217 (2007). (10.1038/nmeth1014) / Nat Methods / Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy by Marko M (2007)
  6. A Rigort, , Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci USA 109, 4449–4454 (2012). (10.1073/pnas.1201333109) / Proc Natl Acad Sci USA / Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography by Rigort A (2012)
  7. E Villa, M Schaffer, JM Plitzko, W Baumeister, Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol 23, 771–777 (2013). (10.1016/j.sbi.2013.08.006) / Curr Opin Struct Biol / Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography by Villa E (2013)
  8. AJ Dalton, MD Felix, A comparative study of the Golgi complex. J Biophys Biochem Cytol 2, 79–84 (1956). (10.1083/jcb.2.4.79) / J Biophys Biochem Cytol / A comparative study of the Golgi complex by Dalton AJ (1956)
  9. MG Farquhar, GE Palade, The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8, 2–10 (1998). (10.1016/S0962-8924(97)01187-2) / Trends Cell Biol / The Golgi apparatus: 100 years of progress and controversy by Farquhar MG (1998)
  10. MS Ladinsky, DN Mastronarde, JR McIntosh, KE Howell, LA Staehelin, Golgi structure in three dimensions: Functional insights from the normal rat kidney cell. J Cell Biol 144, 1135–1149 (1999). (10.1083/jcb.144.6.1135) / J Cell Biol / Golgi structure in three dimensions: Functional insights from the normal rat kidney cell by Ladinsky MS (1999)
  11. BJ Marsh, DN Mastronarde, KF Buttle, KE Howell, JR McIntosh, Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc Natl Acad Sci USA 98, 2399–2406 (2001). (10.1073/pnas.051631998) / Proc Natl Acad Sci USA / Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography by Marsh BJ (2001)
  12. MS Ladinsky, CC Wu, S McIntosh, JR McIntosh, KE Howell, Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol Biol Cell 13, 2810–2825 (2002). (10.1091/mbc.01-12-0593) / Mol Biol Cell / Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments by Ladinsky MS (2002)
  13. BJ Marsh, N Volkmann, JR McIntosh, KE Howell, Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc Natl Acad Sci USA 101, 5565–5570 (2004). (10.1073/pnas.0401242101) / Proc Natl Acad Sci USA / Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells by Marsh BJ (2004)
  14. S Mogelsvang, N Gomez-Ospina, J Soderholm, BS Glick, LA Staehelin, Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol Biol Cell 14, 2277–2291 (2003). (10.1091/mbc.e02-10-0697) / Mol Biol Cell / Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris by Mogelsvang S (2003)
  15. D Zeuschner, , Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 8, 377–383 (2006). (10.1038/ncb1371) / Nat Cell Biol / Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers by Zeuschner D (2006)
  16. BS Donohoe, BH Kang, LA Staehelin, Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci USA 104, 163–168 (2007). (10.1073/pnas.0609818104) / Proc Natl Acad Sci USA / Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi by Donohoe BS (2007)
  17. BS Donohoe, , Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae. Traffic 14, 551–567 (2013). (10.1111/tra.12052) / Traffic / Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae by Donohoe BS (2013)
  18. S Mogelsvang, BJ Marsh, MS Ladinsky, KE Howell, Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5, 338–345 (2004). (10.1111/j.1398-9219.2004.00186.x) / Traffic / Predicting function from structure: 3D structure studies of the mammalian Golgi complex by Mogelsvang S (2004)
  19. BS Donohoe, S Mogelsvang, LA Staehelin, Electron tomography of ER, Golgi and related membrane systems. Methods 39, 154–162 (2006). (10.1016/j.ymeth.2006.05.013) / Methods / Electron tomography of ER, Golgi and related membrane systems by Donohoe BS (2006)
  20. KJ Day, LA Staehelin, BS Glick, A three-stage model of Golgi structure and function. Histochem Cell Biol 140, 239–249 (2013). (10.1007/s00418-013-1128-3) / Histochem Cell Biol / A three-stage model of Golgi structure and function by Day KJ (2013)
  21. GP Henderson, L Gan, GJ Jensen, 3-D ultrastructure of O. tauri: Electron cryotomography of an entire eukaryotic cell. PLoS One 2, e749 (2007). (10.1371/journal.pone.0000749) / PLoS One / 3-D ultrastructure of O. tauri: Electron cryotomography of an entire eukaryotic cell by Henderson GP (2007)
  22. C Bouchet-Marquis, V Starkuviene, M Grabenbauer, Golgi apparatus studied in vitreous sections. J Microsc 230, 308–316 (2008). (10.1111/j.1365-2818.2008.01988.x) / J Microsc / Golgi apparatus studied in vitreous sections by Bouchet-Marquis C (2008)
  23. HM Han, C Bouchet-Marquis, J Huebinger, M Grabenbauer, Golgi apparatus analyzed by cryo-electron microscopy. Histochem Cell Biol 140, 369–381 (2013). (10.1007/s00418-013-1136-3) / Histochem Cell Biol / Golgi apparatus analyzed by cryo-electron microscopy by Han HM (2013)
  24. MG Farquhar, GE Palade, The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol 91, 77s–103s (1981). (10.1083/jcb.91.3.77s) / J Cell Biol / The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage by Farquhar MG (1981)
  25. S Maeda, , Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458, 597–602 (2009). (10.1038/nature07869) / Nature / Structure of the connexin 26 gap junction channel at 3.5 A resolution by Maeda S (2009)
  26. L Shapiro, JP Doyle, P Hensley, DR Colman, WA Hendrickson, Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 17, 435–449 (1996). (10.1016/S0896-6273(00)80176-2) / Neuron / Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin by Shapiro L (1996)
  27. Y Min, , Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein. Proc Natl Acad Sci USA 106, 3154–3159 (2009). (10.1073/pnas.0813110106) / Proc Natl Acad Sci USA / Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein by Min Y (2009)
  28. T Gonen, P Sliz, J Kistler, Y Cheng, T Walz, Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004). (10.1038/nature02503) / Nature / Aquaporin-0 membrane junctions reveal the structure of a closed water pore by Gonen T (2004)
  29. AR Aricescu, EY Jones, Immunoglobulin superfamily cell adhesion molecules: Zippers and signals. Curr Opin Cell Biol 19, 543–550 (2007). (10.1016/j.ceb.2007.09.010) / Curr Opin Cell Biol / Immunoglobulin superfamily cell adhesion molecules: Zippers and signals by Aricescu AR (2007)
  30. JA Frei, ET Stoeckli, SynCAMs extend their functions beyond the synapse. Eur J Neurosci 39, 1752–1760 (2014). (10.1111/ejn.12544) / Eur J Neurosci / SynCAMs extend their functions beyond the synapse by Frei JA (2014)
  31. HH Mollenhauer, An intercisternal structure in the Golgi apparatus. J Cell Biol 24, 504–511 (1965). (10.1083/jcb.24.3.504) / J Cell Biol / An intercisternal structure in the Golgi apparatus by Mollenhauer HH (1965)
  32. S Craig, LA Staehelin, High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems. Eur J Cell Biol 46, 81–93 (1988). / Eur J Cell Biol / High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems by Craig S (1988)
  33. HH Mollenhauer, DJ Morré, Perspectives on Golgi apparatus form and function. J Electron Microsc Tech 17, 2–14 (1991). (10.1002/jemt.1060170103) / J Electron Microsc Tech / Perspectives on Golgi apparatus form and function by Mollenhauer HH (1991)
  34. EB Cluett, WJ Brown, Adhesion of Golgi cisternae by proteinaceous interactions: Intercisternal bridges as putative adhesive structures. J Cell Sci 103, 773–784 (1992). (10.1242/jcs.103.3.773) / J Cell Sci / Adhesion of Golgi cisternae by proteinaceous interactions: Intercisternal bridges as putative adhesive structures by Cluett EB (1992)
  35. WW Franke, , Inter- and intracisternal elements of the Golgi apparatus. A system of membrane-to-membrane cross-links. Z Zellforsch Mikrosk Anat 132, 365–380 (1972). (10.1007/BF02450714) / Z Zellforsch Mikrosk Anat / Inter- and intracisternal elements of the Golgi apparatus. A system of membrane-to-membrane cross-links by Franke WW (1972)
  36. LA Staehelin, Jr TH Giddings, JZ Kiss, FD Sack, Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples. Protoplasma 157, 75–91 (1990). (10.1007/BF01322640) / Protoplasma / Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples by Staehelin LA (1990)
  37. A Oikawa, CH Lund, Y Sakuragi, HV Scheller, Golgi-localized enzyme complexes for plant cell wall biosynthesis. Trends Plant Sci 18, 49–58 (2013). (10.1016/j.tplants.2012.07.002) / Trends Plant Sci / Golgi-localized enzyme complexes for plant cell wall biosynthesis by Oikawa A (2013)
  38. C McCormick, G Duncan, KT Goutsos, F Tufaro, The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA 97, 668–673 (2000). (10.1073/pnas.97.2.668) / Proc Natl Acad Sci USA / The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate by McCormick C (2000)
  39. K Sasai, , The critical role of the stem region as a functional domain responsible for the oligomerization and Golgi localization of N-acetylglucosaminyltransferase V. The involvement of a domain homophilic interaction. J Biol Chem 276, 759–765 (2001). (10.1074/jbc.M004972200) / J Biol Chem / The critical role of the stem region as a functional domain responsible for the oligomerization and Golgi localization of N-acetylglucosaminyltransferase V. The involvement of a domain homophilic interaction by Sasai K (2001)
  40. J Harholt, , ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. Planta 236, 115–128 (2012). (10.1007/s00425-012-1592-3) / Planta / ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta by Harholt J (2012)
  41. Y-H Chou, G Pogorelko, OA Zabotina, Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes. Plant Physiol 159, 1355–1366 (2012). (10.1104/pp.112.199356) / Plant Physiol / Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes by Chou Y-H (2012)
  42. A Hassinen, S Kellokumpu, Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homo- and heteromers. J Biol Chem 289, 26937–26948 (2014). (10.1074/jbc.M114.595058) / J Biol Chem / Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homo- and heteromers by Hassinen A (2014)
  43. DF Bainton, MG Farquhar, Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol 28, 277–301 (1966). / J Cell Biol / Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes by Bainton DF (1966)
  44. M Cho, PR Garant, Sequential events in the formation of collagen secretion granules with special reference to the development of segment-long-spacing-like aggregates. Anat Rec 199, 309–320 (1981). (10.1002/ar.1091990302) / Anat Rec / Sequential events in the formation of collagen secretion granules with special reference to the development of segment-long-spacing-like aggregates by Cho M (1981)
  45. F Marchi, CP Leblond, Radioautographic characterization of successive compartments along the rough endoplasmic reticulum-Golgi pathway of collagen precursors in foot pad fibroblasts of [3H]proline-injected rats. J Cell Biol 98, 1705–1709 (1984). (10.1083/jcb.98.5.1705) / J Cell Biol / Radioautographic characterization of successive compartments along the rough endoplasmic reticulum-Golgi pathway of collagen precursors in foot pad fibroblasts of [3H]proline-injected rats by Marchi F (1984)
  46. DA Scott, R Docampo, JA Dvorak, S Shi, RD Leapman, In situ compositional analysis of acidocalcisomes in Trypanosoma cruzi. J Biol Chem 272, 28020–28029 (1997). (10.1074/jbc.272.44.28020) / J Biol Chem / In situ compositional analysis of acidocalcisomes in Trypanosoma cruzi by Scott DA (1997)
  47. R Docampo, SN Moreno, Acidocalcisomes. Cell Calcium 50, 113–119 (2011). (10.1016/j.ceca.2011.05.012) / Cell Calcium / Acidocalcisomes by Docampo R (2011)
  48. A Hong-Hermesdorf, , Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 10, 1034–1042 (2014). (10.1038/nchembio.1662) / Nat Chem Biol / Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas by Hong-Hermesdorf A (2014)
  49. Y Komine, LL Eggink, H Park, JK Hoober, Vacuolar granules in Chlamydomonas reinhardtii: Polyphosphate and a 70-kDa polypeptide as major components. Planta 210, 897–905 (2000). (10.1007/s004250050695) / Planta / Vacuolar granules in Chlamydomonas reinhardtii: Polyphosphate and a 70-kDa polypeptide as major components by Komine Y (2000)
  50. Ruiz FA Marchesini N Seufferheld M Govindjee Docampo R (2001) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276(49):46196–46203. (10.1074/jbc.M105268200)
  51. M Aksoy, W Pootakham, AR Grossman, Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. Plant Cell 26, 4214–4229 (2014). (10.1105/tpc.114.129270) / Plant Cell / Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation by Aksoy M (2014)
  52. MR Gómez-García, A Kornberg, Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc Natl Acad Sci USA 101, 15876–15880 (2004). (10.1073/pnas.0406923101) / Proc Natl Acad Sci USA / Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate by Gómez-García MR (2004)
  53. R Docampo, W de Souza, K Miranda, P Rohloff, SNJ Moreno, Acidocalcisomes - conserved from bacteria to man. Nat Rev Microbiol 3, 251–261 (2005). (10.1038/nrmicro1097) / Nat Rev Microbiol / Acidocalcisomes - conserved from bacteria to man by Docampo R (2005)
  54. SA Smith, , Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci USA 103, 903–908 (2006). (10.1073/pnas.0507195103) / Proc Natl Acad Sci USA / Polyphosphate modulates blood coagulation and fibrinolysis by Smith SA (2006)
  55. F Müller, , Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139, 1143–1156 (2009). (10.1016/j.cell.2009.11.001) / Cell / Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo by Müller F (2009)
  56. L Bonfanti, , Procollagen traverses the Golgi stack without leaving the lumen of cisternae: Evidence for cisternal maturation. Cell 95, 993–1003 (1998). (10.1016/S0092-8674(00)81723-7) / Cell / Procollagen traverses the Golgi stack without leaving the lumen of cisternae: Evidence for cisternal maturation by Bonfanti L (1998)
  57. AA Mironov, , Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155, 1225–1238 (2001). (10.1083/jcb.200108073) / J Cell Biol / Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae by Mironov AA (2001)
  58. BS Glick, V Malhotra, The curious status of the Golgi apparatus. Cell 95, 883–889 (1998). (10.1016/S0092-8674(00)81713-4) / Cell / The curious status of the Golgi apparatus by Glick BS (1998)
  59. GI McFadden, M Melkonian, Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinophyceae). I: Flagellar regeneration. Protoplasma 130, 186–198 (1986). (10.1007/BF01276600) / Protoplasma / Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinophyceae). I: Flagellar regeneration by McFadden GI (1986)
  60. GI McFadden, HR Preisig, M Melkonian, Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinophyceae). II: Cell wall secretion and assembly. Protoplasma 131, 174–184 (1986). (10.1007/BF01285039) / Protoplasma / Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinophyceae). II: Cell wall secretion and assembly by McFadden GI (1986)
  61. B Becker, B Bölinger, M Melkonian, Anterograde transport of algal scales through the Golgi complex is not mediated by vesicles. Trends Cell Biol 5, 305–307 (1995). (10.1016/S0962-8924(00)89047-9) / Trends Cell Biol / Anterograde transport of algal scales through the Golgi complex is not mediated by vesicles by Becker B (1995)
  62. JW Catt, GJ Hills, K Roberts, Cell wall glycoproteins from Chlamydomonas reinhardii, and their self-assembly. Planta 138, 91–98 (1978). (10.1007/BF00392922) / Planta / Cell wall glycoproteins from Chlamydomonas reinhardii, and their self-assembly by Catt JW (1978)
  63. UW Goodenough, B Gebhart, RP Mecham, JE Heuser, Crystals of the Chlamydomonas reinhardtii cell wall: Polymerization, depolymerization, and purification of glycoprotein monomers. J Cell Biol 103, 405–417 (1986). (10.1083/jcb.103.2.405) / J Cell Biol / Crystals of the Chlamydomonas reinhardtii cell wall: Polymerization, depolymerization, and purification of glycoprotein monomers by Goodenough UW (1986)
  64. K Roberts, M Gurney-Smith, GJ Hills, Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. I. Ultrastructure and preliminary chemical analysis. J Ultrastruct Res 40, 599–613 (1972). (10.1016/S0022-5320(72)80046-7) / J Ultrastruct Res / Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. I. Ultrastructure and preliminary chemical analysis by Roberts K (1972)
  65. UW Goodenough, JE Heuser, The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique. J Cell Biol 101, 1550–1568 (1985). (10.1083/jcb.101.4.1550) / J Cell Biol / The Chlamydomonas cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique by Goodenough UW (1985)
  66. Y Matsuda, A Yamasaki, S Tatsuaki, T Yamaguchi, Purification and characterization of cell wall lytic enzyme released by mating gametes of Chlamydomonas reinhardtii. FEBS Lett 166, 293–297 (1984). (10.1016/0014-5793(84)80098-8) / FEBS Lett / Purification and characterization of cell wall lytic enzyme released by mating gametes of Chlamydomonas reinhardtii by Matsuda Y (1984)
  67. SH Imam, WJ Snell, The Chlamydomonas cell wall degrading enzyme, lysin, acts on two substrates within the framework of the wall. J Cell Biol 106, 2211–2221 (1988). (10.1083/jcb.106.6.2211) / J Cell Biol / The Chlamydomonas cell wall degrading enzyme, lysin, acts on two substrates within the framework of the wall by Imam SH (1988)
  68. R Danev, B Buijsse, M Khoshouei, JM Plitzko, W Baumeister, Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc Natl Acad Sci USA 111, 15635–15640 (2014). (10.1073/pnas.1418377111) / Proc Natl Acad Sci USA / Volta potential phase plate for in-focus phase contrast transmission electron microscopy by Danev R (2014)
  69. JG Umen, UW Goodenough, Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev 15, 1652–1661 (2001). (10.1101/gad.892101) / Genes Dev / Control of cell division by a retinoblastoma protein homolog in Chlamydomonas by Umen JG (2001)
  70. M Schaffer, , Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio-protocol 5, e1575 (2015). (10.21769/BioProtoc.1575) / Bio-protocol / Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography by Schaffer M (2015)
  71. A Rigort, E Villa, FJ Bäuerlein, BD Engel, JM Plitzko, Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining. Methods Cell Biol 111, 259–281 (2012). (10.1016/B978-0-12-416026-2.00014-5) / Methods Cell Biol / Integrative approaches for cellular cryo-electron tomography: Correlative imaging and focused ion beam micromachining by Rigort A (2012)
  72. MF Hayles, DJ Stokes, D Phifer, KC Findlay, A technique for improved focused ion beam milling of cryo-prepared life science specimens. J Microsc 226, 263–269 (2007). (10.1111/j.1365-2818.2007.01775.x) / J Microsc / A technique for improved focused ion beam milling of cryo-prepared life science specimens by Hayles MF (2007)
  73. DN Mastronarde, Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152, 36–51 (2005). (10.1016/j.jsb.2005.07.007) / J Struct Biol / Automated electron microscope tomography using robust prediction of specimen movements by Mastronarde DN (2005)
  74. DN Mastronarde, Dual-axis tomography: An approach with alignment methods that preserve resolution. J Struct Biol 120, 343–352 (1997). (10.1006/jsbi.1997.3919) / J Struct Biol / Dual-axis tomography: An approach with alignment methods that preserve resolution by Mastronarde DN (1997)
  75. T Hrabe, , PyTom: A python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J Struct Biol 178, 177–188 (2012). (10.1016/j.jsb.2011.12.003) / J Struct Biol / PyTom: A python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis by Hrabe T (2012)
  76. S Nickell, , TOM software toolbox: Acquisition and analysis for electron tomography. J Struct Biol 149, 227–234 (2005). (10.1016/j.jsb.2004.10.006) / J Struct Biol / TOM software toolbox: Acquisition and analysis for electron tomography by Nickell S (2005)
  77. EF Pettersen, , UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612 (2004). (10.1002/jcc.20084) / J Comput Chem / UCSF Chimera--a visualization system for exploratory research and analysis by Pettersen EF (2004)
  78. HY Sun, , Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design. J Biol Chem 282, 9973–9982 (2007). (10.1074/jbc.M610285200) / J Biol Chem / Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design by Sun HY (2007)
  79. JM van den Elsen, DA Kuntz, DR Rose, Structure of Golgi alpha-mannosidase II: A target for inhibition of growth and metastasis of cancer cells. EMBO J 20, 3008–3017 (2001). (10.1093/emboj/20.12.3008) / EMBO J / Structure of Golgi alpha-mannosidase II: A target for inhibition of growth and metastasis of cancer cells by van den Elsen JM (2001)
  80. LN Gastinel, , Bovine alpha1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases. EMBO J 20, 638–649 (2001). (10.1093/emboj/20.4.638) / EMBO J / Bovine alpha1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases by Gastinel LN (2001)
Dates
Type When
Created 9 years, 11 months ago (Aug. 26, 2015, 10:30 p.m.)
Deposited 3 years, 2 months ago (June 7, 2022, 9:27 a.m.)
Indexed 3 weeks, 6 days ago (July 24, 2025, 7:46 a.m.)
Issued 9 years, 11 months ago (Aug. 26, 2015)
Published 9 years, 11 months ago (Aug. 26, 2015)
Published Online 9 years, 11 months ago (Aug. 26, 2015)
Published Print 9 years, 11 months ago (Sept. 8, 2015)
Funders 5
  1. Alexander von Humboldt-Stiftung 10.13039/100005156

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels5
    1. Humboldt-Stiftung
    2. Humboldt Foundation
    3. Alexander von Humboldt Foundation
    4. Humboldt Stiftung
    5. AvH
    Awards1
    1. research fellowship
  2. European Commission 10.13039/501100000780

    Region: Europe

    gov (National government)

    Labels26
    1. European Union
    2. Comisión Europea
    3. Europäische Kommission
    4. EU-Kommissionen
    5. Euroopa Komisjoni
    6. Ευρωπαϊκής Επιτροπής
    7. Европейската комисия
    8. Evropské komise
    9. Commission européenne
    10. Choimisiúin Eorpaigh
    11. Europskoj komisiji
    12. Commissione europea
    13. La Commissione europea
    14. Eiropas Komisiju
    15. Europos Komisijos
    16. Európai Bizottságról
    17. Europese Commissie
    18. Komisja Europejska
    19. Comissão Europeia
    20. Comisia Europeană
    21. Európskej komisii
    22. Evropski komisiji
    23. Euroopan komission
    24. Europeiska kommissionen
    25. EC
    26. EU
    Awards1
    1. HEALTH-F4-2008-201648/PROSPECTS
  3. European Commission 10.13039/501100000780

    Region: Europe

    gov (National government)

    Labels26
    1. European Union
    2. Comisión Europea
    3. Europäische Kommission
    4. EU-Kommissionen
    5. Euroopa Komisjoni
    6. Ευρωπαϊκής Επιτροπής
    7. Европейската комисия
    8. Evropské komise
    9. Commission européenne
    10. Choimisiúin Eorpaigh
    11. Europskoj komisiji
    12. Commissione europea
    13. La Commissione europea
    14. Eiropas Komisiju
    15. Europos Komisijos
    16. Európai Bizottságról
    17. Europese Commissie
    18. Komisja Europejska
    19. Comissão Europeia
    20. Comisia Europeană
    21. Európskej komisii
    22. Evropski komisiji
    23. Euroopan komission
    24. Europeiska kommissionen
    25. EC
    26. EU
    Awards1
    1. ERC-2012-SyG_318987-ToPAG
  4. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. CIPSM
  5. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. SFB 1035

@article{Engel_2015, title={In situ structural analysis of Golgi intracisternal protein arrays}, volume={112}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1515337112}, DOI={10.1073/pnas.1515337112}, number={36}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Engel, Benjamin D. and Schaffer, Miroslava and Albert, Sahradha and Asano, Shoh and Plitzko, Jürgen M. and Baumeister, Wolfgang}, year={2015}, month=aug, pages={11264–11269} }