Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Significance A complete description of nanoscale thermal transport is a fundamental problem that has defied understanding for many decades. Here, we uncover a surprising new regime of nanoscale thermal transport where, counterintuitively, nanoscale heat sources cool more quickly when placed close together than when they are widely separated. This increased cooling efficiency is possible when the separation between nanoscale heat sources is comparable to the average mean free paths of the dominant heat-carrying phonons. This finding suggests new approaches for addressing the significant challenge of thermal management in nanosystems, with design implications for integrated circuits, thermoelectric devices, nanoparticle-mediated thermal therapies, and nanoenhanced photovoltaics for improving clean-energy technologies.

Bibliography

Hoogeboom-Pot, K. M., Hernandez-Charpak, J. N., Gu, X., Frazer, T. D., Anderson, E. H., Chao, W., Falcone, R. W., Yang, R., Murnane, M. M., Kapteyn, H. C., & Nardi, D. (2015). A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency. Proceedings of the National Academy of Sciences, 112(16), 4846–4851.

Authors 11
  1. Kathleen M. Hoogeboom-Pot (first)
  2. Jorge N. Hernandez-Charpak (additional)
  3. Xiaokun Gu (additional)
  4. Travis D. Frazer (additional)
  5. Erik H. Anderson (additional)
  6. Weilun Chao (additional)
  7. Roger W. Falcone (additional)
  8. Ronggui Yang (additional)
  9. Margaret M. Murnane (additional)
  10. Henry C. Kapteyn (additional)
  11. Damiano Nardi (additional)
References 27 Referenced 173
  1. 10.1038/nmat2568
  2. 10.1038/ncomms2630
  3. 10.1103/PhysRevLett.107.095901
  4. 10.1103/PhysRevB.76.075207
  5. 10.1038/srep02963
  6. 10.1103/PhysRevLett.110.025901
  7. 10.1103/PhysRevB.84.085204
  8. 10.1103/PhysRevB.87.035437
  9. 10.1103/PhysRevLett.109.205901
  10. SW King, H Simka, D Herr, H Akinaga, M Garner, Research updates: The three M’s (materials, metrology, and modeling) together pave the path to future nanoelectronic technologies. Appl Phys Lett Mater 1, 040701 (2013). / Appl Phys Lett Mater / Research updates: The three M’s (materials, metrology, and modeling) together pave the path to future nanoelectronic technologies by King SW (2013)
  11. 10.1109/JPROC.2006.879794
  12. 10.1126/science.280.5368.1412
  13. D Nardi, , Probing limits of acoustic nanometrology using coherent extreme ultraviolet light. Proc SPIE 8681, 86810N-1–86810N-8 (2013). / Proc SPIE / Probing limits of acoustic nanometrology using coherent extreme ultraviolet light by Nardi D (2013)
  14. 10.1103/PhysRevB.85.195431
  15. 10.1364/OL.32.000286
  16. 10.1103/PhysRevB.76.075337
  17. 10.1021/nl201863n
  18. COMSOL Inc. (2013) COMSOL Multiphysics Version 4.3b (COMSOL Inc. Burlington MA).
  19. G Chen D Borca-Tasciuc RG Yang Nanoscale heat transfer. Encyclopedia of Nanoscience and Nanotechnology ed Nalwa HS (American Scientific Publishers Valencia CA) Vol 7 pp 429–459. (2004).
  20. 10.1103/PhysRevB.84.195206
  21. 10.1115/1.2822665
  22. 10.1103/PhysRevB.90.064302
  23. 10.1126/science.1218497
  24. 10.1016/S0370-1573(00)00070-3
  25. 10.1140/epjb/e2012-30383-8
  26. 10.1103/PhysRevLett.112.040601
  27. 10.1103/PhysRevB.90.014306
Dates
Type When
Created 10 years, 4 months ago (March 23, 2015, 11:17 p.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 12:13 a.m.)
Indexed 10 hours, 57 minutes ago (Aug. 21, 2025, 12:34 p.m.)
Issued 10 years, 4 months ago (March 23, 2015)
Published 10 years, 4 months ago (March 23, 2015)
Published Online 10 years, 4 months ago (March 23, 2015)
Published Print 10 years, 4 months ago (April 21, 2015)
Funders 1
  1. National Science Foundation 10.13039/100000001

    Region: Americas

    gov (National government)

    Labels4
    1. U.S. National Science Foundation
    2. NSF
    3. US NSF
    4. USA NSF
    Awards1
    1. DGE 1144083

@article{Hoogeboom_Pot_2015, title={A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency}, volume={112}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1503449112}, DOI={10.1073/pnas.1503449112}, number={16}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Hoogeboom-Pot, Kathleen M. and Hernandez-Charpak, Jorge N. and Gu, Xiaokun and Frazer, Travis D. and Anderson, Erik H. and Chao, Weilun and Falcone, Roger W. and Yang, Ronggui and Murnane, Margaret M. and Kapteyn, Henry C. and Nardi, Damiano}, year={2015}, month=mar, pages={4846–4851} }