Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Significance Certain oligomeric species generated during the self-assembly of specific proteins into ordered fibrillar aggregates are likely to be key players in the initiation and spreading of neurodegenerative diseases. We have purified stable toxic oligomeric species of α-synuclein and defined and minimized their degree of heterogeneity, which has allowed us to identify distinct subgroups of oligomers and determine their structural properties and three-dimensional molecular architectures. All the oligomeric subgroups possess approximately cylindrical architectures with marked similarities to amyloid fibrils, suggesting that these types of oligomers are kinetically trapped during protein self-assembly. The relative stabilities and inherent pathological roles of different amyloid oligomers are likely to result from the multiplicity of pathways of the misfolding process and the remarkably slow rates of structural conversions.

Bibliography

Chen, S. W., Drakulic, S., Deas, E., Ouberai, M., Aprile, F. A., Arranz, R., Ness, S., Roodveldt, C., Guilliams, T., De-Genst, E. J., Klenerman, D., Wood, N. W., Knowles, T. P. J., Alfonso, C., Rivas, G., Abramov, A. Y., Valpuesta, J. M., Dobson, C. M., & Cremades, N. (2015). Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proceedings of the National Academy of Sciences, 112(16).

Authors 19
  1. Serene W. Chen (first)
  2. Srdja Drakulic (additional)
  3. Emma Deas (additional)
  4. Myriam Ouberai (additional)
  5. Francesco A. Aprile (additional)
  6. Rocío Arranz (additional)
  7. Samuel Ness (additional)
  8. Cintia Roodveldt (additional)
  9. Tim Guilliams (additional)
  10. Erwin J. De-Genst (additional)
  11. David Klenerman (additional)
  12. Nicholas W. Wood (additional)
  13. Tuomas P.J. Knowles (additional)
  14. Carlos Alfonso (additional)
  15. Germán Rivas (additional)
  16. Andrey Y. Abramov (additional)
  17. José María Valpuesta (additional)
  18. Christopher M. Dobson (additional)
  19. Nunilo Cremades (additional)
References 66 Referenced 323
  1. 10.1146/annurev.biochem.75.101304.123901
  2. 10.1016/j.cell.2012.02.022
  3. 10.1006/jmbi.1997.1348
  4. 10.1073/pnas.1219476110
  5. 10.1073/pnas.0901085106
  6. 10.1038/nrm3810
  7. 10.1093/emboj/18.4.815
  8. 10.1006/jmbi.1995.0604
  9. 10.1006/jmbi.2000.3650
  10. 10.1006/jmbi.2000.3908
  11. 10.1038/nature05695
  12. 10.1126/science.1213151
  13. 10.1038/416507a
  14. 10.1007/s00109-003-0464-5
  15. 10.1523/JNEUROSCI.0615-12.2012
  16. 10.1016/j.chembiol.2012.02.003
  17. 10.1042/BJ20111924
  18. 10.1002/anie.201400491
  19. 10.1016/j.jmb.2008.08.039
  20. 10.1021/ja9077599
  21. 10.1016/j.bbamem.2009.03.010
  22. 10.1021/ja411577t
  23. 10.1016/j.cell.2012.03.037
  24. 10.1021/bi0102398
  25. 10.1523/JNEUROSCI.2617-07.2007
  26. 10.1021/bi5007833
  27. 10.1074/jbc.M114.566695
  28. 10.1002/anie.201200813
  29. 10.1021/ja412105t
  30. 10.1016/S0006-3495(00)76713-0
  31. 10.1002/1097-0282(20001015)54:5<328::AID-BIP40>3.0.CO;2-P
  32. 10.1007/s002490100176
  33. 10.1016/S0022-2836(02)00735-0
  34. 10.1074/jbc.M110551200
  35. 10.1042/BJ20090379
  36. 10.1021/jp4003559
  37. 10.1016/j.jmb.2008.06.063
  38. 10.1021/bi800279y
  39. 10.1073/pnas.0502066102
  40. 10.1016/j.febslet.2013.12.015
  41. 10.1074/jbc.273.16.9443
  42. 10.1016/0163-7827(85)90011-6
  43. 10.1016/j.febslet.2011.10.006
  44. 10.1074/jbc.M113.478297
  45. 10.1016/j.bbamem.2006.02.001
  46. 10.1016/0005-2736(95)80035-E
  47. 10.1126/science.1079469
  48. 10.1021/cb500505m
  49. 10.1073/pnas.0712179105
  50. 10.1073/pnas.1111305109
  51. 10.1016/j.jmb.2003.10.044
  52. 10.1038/ncomms6219
  53. 10.1007/s00018-007-6525-0
  54. 10.1023/B:NERE.0000014834.06405.af
  55. 10.1111/j.1742-4658.2006.05234.x
  56. 10.1155/2012/428010
  57. 10.1016/S0304-3940(02)00016-2
  58. 10.2174/0929867053764635
  59. 10.1016/j.neuint.2012.11.004
  60. 10.1016/S0968-0004(00)01610-8
  61. 10.1038/nature02261
  62. 10.1021/bi300558q
  63. 10.1016/j.bpj.2013.04.050
  64. TM Laue, BD Shah, TM Ridgeway, SL Pelletier, Computer-aided interpretation of analytical sedimentation data for proteins. Analytical Ultracentrifugation in Biochemistry and Polymer Science, eds SE Harding, AJ Rowe, JC Horton (Roy Soc Chem, Cambridge, UK), pp. 90–125 (1992). / Analytical Ultracentrifugation in Biochemistry and Polymer Science by Laue TM (1992)
  65. 10.1006/jsbi.1996.0036
  66. 10.1006/jsbi.1999.4174
Dates
Type When
Created 10 years, 4 months ago (April 8, 2015, 11:18 p.m.)
Deposited 3 years, 4 months ago (April 13, 2022, 12:16 a.m.)
Indexed 4 minutes ago (Aug. 26, 2025, 2:40 a.m.)
Issued 10 years, 4 months ago (April 8, 2015)
Published 10 years, 4 months ago (April 8, 2015)
Published Online 10 years, 4 months ago (April 8, 2015)
Published Print 10 years, 4 months ago (April 21, 2015)
Funders 0

None

@article{Chen_2015, title={Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation}, volume={112}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1421204112}, DOI={10.1073/pnas.1421204112}, number={16}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Chen, Serene W. and Drakulic, Srdja and Deas, Emma and Ouberai, Myriam and Aprile, Francesco A. and Arranz, Rocío and Ness, Samuel and Roodveldt, Cintia and Guilliams, Tim and De-Genst, Erwin J. and Klenerman, David and Wood, Nicholas W. and Knowles, Tuomas P.J. and Alfonso, Carlos and Rivas, Germán and Abramov, Andrey Y. and Valpuesta, José María and Dobson, Christopher M. and Cremades, Nunilo}, year={2015}, month=apr }