Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

The majority of DNA in eukaryotic cells exists in the highly condensed structural hierarchy of chromatin, which presents a challenge to DNA repair enzymes in that recognition, incision, and restoration of the original sequence at most sites must take place within these structural constraints. To test base excision repair (BER) activities on chromatin substrates, an in vitro system was developed that uses human uracil DNA glycosylase (UDG), apyrimidinic/apurinic endonuclease (APE), and DNA polymerase β (pol β) on homogeneously damaged, rotationally positioned DNA in nucleosomes. We find that UDG and APE carry out their combined catalytic activities with reduced efficiency on nucleosome substrates (≈10% of that on naked DNA). Furthermore, these enzymes distinguish between two different rotational settings of the lesion on the histone surface, showing a 2- to 3-fold difference in activity between uracil facing ``toward'' and ``away from'' the histones. However, UDG and APE will digest such substrates to completion in a concentration-dependent manner. Conversely, the synthesis activity of pol β is inhibited completely by nucleosome substrates and is independent of enzyme concentration. These results suggest that the first two steps of BER, UDG and APE, may occur ``unassisted'' in chromatin, whereas downstream factors in this pathway (i.e., pol β) may require nucleosome remodeling for efficient DNA BER in at least some regions of chromatin in eukaryotic cells.

Bibliography

Beard, B. C., Wilson, S. H., & Smerdon, M. J. (2003). Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proceedings of the National Academy of Sciences, 100(13), 7465–7470.

Authors 3
  1. Brian C. Beard (first)
  2. Samuel H. Wilson (additional)
  3. Michael J. Smerdon (additional)
References 61 Referenced 134
  1. 10.1038/35077232
  2. 10.1126/science.1056154
  3. 10.1016/S0027-5107(98)00084-0
  4. 10.1038/38444
  5. Wolffe A. P. (1998) Chromatin: Structure and Function (Academic San Diego). (10.1016/S1067-5701(98)80005-3)
  6. van Holde K. E. (1988) Chromatin (Springer New York). (10.1007/978-1-4612-3490-6)
  7. 10.1093/emboj/18.13.3712
  8. Li, Q. & Wrange, O. (1995) Mol. Cell. Biol. 8, 4375–4384. / Mol. Cell. Biol. (1995)
  9. 10.1101/gad.7.12a.2471
  10. 10.1021/bi990297h
  11. 10.1126/science.1063127
  12. 10.1146/annurev.biochem.71.110601.135400
  13. 10.1073/pnas.90.17.7915
  14. 10.1038/362709a0
  15. 10.1016/S0027-5107(02)00258-0
  16. 10.1021/bi00077a005
  17. 10.1126/science.1948068
  18. 10.1021/bi00065a003
  19. 10.1126/science.7839142
  20. 10.1073/pnas.94.6.2215
  21. Friedberg E. C. Walker G. C. & Siede W. (1995) DNA Repair and Mutagenesis (Am. Soc. Microbiol. Washington DC).
  22. 10.1074/jbc.273.33.21203
  23. 10.1016/S0022-2836(05)80061-0
  24. 10.1093/nar/8.16.3517
  25. 10.1093/nar/6.4.1387
  26. 10.1093/nar/24.21.4349
  27. 10.1093/nar/23.22.4557
  28. 10.1074/jbc.274.18.12201
  29. 10.1093/nar/29.18.3857
  30. 10.1126/science.7624801
  31. 10.1074/jbc.271.30.17811
  32. 10.1016/S1097-2765(02)00736-0
  33. 10.1093/emboj/19.20.5492
  34. 10.1021/bi00294a050
  35. 10.1073/pnas.79.19.5896
  36. 10.1038/35000249
  37. 10.1038/384087a0
  38. 10.1021/bi9703812
  39. 10.1016/S0969-2126(02)00930-9
  40. 10.1128/MCB.19.10.6532
  41. 10.1093/embo-reports/kvf075
  42. 10.1046/j.1432-1033.2002.02888.x
  43. Harrigan J. A. Opresko P. L. Von Kobbe C. Kedar P. S. Prasad R. Wilson S. H. & Bohr V. A. (March 27 2003) J. Biol. Chem. 10.1074/jbc.M213103200.
  44. 10.1002/j.1460-2075.1996.tb01056.x
  45. 10.1093/nar/28.10.2049
  46. 10.1093/emboj/20.22.6530
  47. 10.1021/bi962710g
  48. 10.1016/S1383-5742(02)00009-1
  49. 10.1128/MCB.18.6.3563
  50. 10.1006/scel.1995.0031
  51. 10.1128/MCB.22.19.6779-6787.2002
  52. 10.1093/emboj/20.8.2004
  53. Gaillard H. Fitzgerald D. J. Smith C. L. Peterson C. L. Richmond T. J. & Thoma F. (March 11 2003) J. Biol. Chem. 10.1074/jbc.M300770200.
  54. 10.1093/emboj/cdf581
  55. 10.1021/bi991771m
  56. 10.1016/0022-2836(91)90384-I
  57. 10.1073/pnas.87.15.5724
  58. 10.1073/pnas.93.4.1370
  59. 10.1006/jmbi.1998.2087
  60. 10.1128/MCB.22.20.7147-7157.2002
  61. 10.1006/jmbi.1997.0916
Dates
Type When
Created 22 years, 2 months ago (June 24, 2003, 1:47 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 11:12 p.m.)
Indexed 3 days, 4 hours ago (Aug. 30, 2025, 12:48 p.m.)
Issued 22 years, 2 months ago (June 10, 2003)
Published 22 years, 2 months ago (June 10, 2003)
Published Online 22 years, 2 months ago (June 10, 2003)
Published Print 22 years, 2 months ago (June 24, 2003)
Funders 0

None

@article{Beard_2003, title={Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes}, volume={100}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1330328100}, DOI={10.1073/pnas.1330328100}, number={13}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Beard, Brian C. and Wilson, Samuel H. and Smerdon, Michael J.}, year={2003}, month=jun, pages={7465–7470} }