Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Significance Helicobacter pylori is the greatest risk factor for gastric adenocarcinoma and has been classified as a carcinogen by the World Health Organization. Cytotoxin associated gene A (CagA) is the primary virulence determinant of H. pylori and is sufficient to induce tumor formation in animal models. We show here that the host tumor suppressor Apoptosis-stimulating Protein of p53-2 (ASPP2) binds robustly to an N-terminal domain of CagA and elucidate the crystal structure of this complex, revealing the details of the CagA–ASPP2 interaction. Structure-based mutagenesis disrupts this complex in vitro and in cells. Furthermore, we show that the CagA–ASPP2 interaction modulates critical ASPP2 functions, such as p53-binding and apoptosis of H. pylori -infected cells.

Bibliography

Nešić, D., Buti, L., Lu, X., & Stebbins, C. E. (2014). Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2. Proceedings of the National Academy of Sciences, 111(4), 1562–1567.

Authors 4
  1. Dragana Nešić (first)
  2. Ludovico Buti (additional)
  3. Xin Lu (additional)
  4. C. Erec Stebbins (additional)
References 55 Referenced 60
  1. RM Peek, MJ Blaser, Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2, 28–37 (2002). (10.1038/nrc703) / Nat Rev Cancer / Helicobacter pylori and gastrointestinal tract adenocarcinomas by Peek RM (2002)
  2. S Censini, et al., cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93, 14648–14653 (1996). (10.1073/pnas.93.25.14648) / Proc Natl Acad Sci USA / cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors by Censini S (1996)
  3. M Asahi, et al., Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med 191, 593–602 (2000). (10.1084/jem.191.4.593) / J Exp Med / Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells by Asahi M (2000)
  4. S Backert, et al., Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol 2, 155–164 (2000). (10.1046/j.1462-5822.2000.00043.x) / Cell Microbiol / Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus by Backert S (2000)
  5. S Odenbreit, et al., Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000). (10.1126/science.287.5457.1497) / Science / Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion by Odenbreit S (2000)
  6. M Stein, R Rappuoli, A Covacci, Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci USA 97, 1263–1268 (2000). (10.1073/pnas.97.3.1263) / Proc Natl Acad Sci USA / Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation by Stein M (2000)
  7. A Covacci, et al., Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA 90, 5791–5795 (1993). (10.1073/pnas.90.12.5791) / Proc Natl Acad Sci USA / Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer by Covacci A (1993)
  8. MK Tummuru, TL Cover, MJ Blaser, Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: Evidence of linkage to cytotoxin production. Infect Immun 61, 1799–1809 (1993). (10.1128/iai.61.5.1799-1809.1993) / Infect Immun / Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: Evidence of linkage to cytotoxin production by Tummuru MK (1993)
  9. M Hatakeyama, SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol 11, 30–37 (2008). (10.1016/j.mib.2007.12.003) / Curr Opin Microbiol / SagA of CagA in Helicobacter pylori pathogenesis by Hatakeyama M (2008)
  10. N Ohnishi, et al., Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA 105, 1003–1008 (2008). (10.1073/pnas.0711183105) / Proc Natl Acad Sci USA / Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse by Ohnishi N (2008)
  11. AT Franco, et al., Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res 68, 379–387 (2008). (10.1158/0008-5472.CAN-07-0824) / Cancer Res / Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors by Franco AT (2008)
  12. M Selbach, S Moese, CR Hauck, TF Meyer, S Backert, Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277, 6775–6778 (2002). (10.1074/jbc.C100754200) / J Biol Chem / Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo by Selbach M (2002)
  13. M Poppe, SM Feller, G Römer, S Wessler, Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26, 3462–3472 (2007). (10.1038/sj.onc.1210139) / Oncogene / Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility by Poppe M (2007)
  14. M Stein, et al., c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43, 971–980 (2002). (10.1046/j.1365-2958.2002.02781.x) / Mol Microbiol / c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs by Stein M (2002)
  15. M Hatakeyama, Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4, 688–694 (2004). (10.1038/nrc1433) / Nat Rev Cancer / Oncogenic mechanisms of the Helicobacter pylori CagA protein by Hatakeyama M (2004)
  16. H Higashi, et al., EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem 280, 23130–23137 (2005). (10.1074/jbc.M503583200) / J Biol Chem / EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells by Higashi H (2005)
  17. F Bagnoli, L Buti, L Tompkins, A Covacci, MR Amieva, Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci USA 102, 16339–16344 (2005). (10.1073/pnas.0502598102) / Proc Natl Acad Sci USA / Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells by Bagnoli F (2005)
  18. I Saadat, et al., Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333 (2007). (10.1038/nature05765) / Nature / Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity by Saadat I (2007)
  19. D Nesić, et al., Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat Struct Mol Biol 17, 130–132 (2010). (10.1038/nsmb.1705) / Nat Struct Mol Biol / Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates by Nesić D (2010)
  20. YH Tsang, et al., Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene 29, 5643–5650 (2010). (10.1038/onc.2010.304) / Oncogene / Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation by Tsang YH (2010)
  21. L Buti, et al., Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA 108, 9238–9243 (2011). (10.1073/pnas.1106200108) / Proc Natl Acad Sci USA / Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host by Buti L (2011)
  22. LF Jiménez-Soto, et al., Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog 5, e1000684 (2009). (10.1371/journal.ppat.1000684) / PLoS Pathog / Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner by Jiménez-Soto LF (2009)
  23. A Lamb, et al., Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep 10, 1242–1249 (2009). (10.1038/embor.2009.210) / EMBO Rep / Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination by Lamb A (2009)
  24. T Hayashi, et al., Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe 12, 20–33 (2012). (10.1016/j.chom.2012.05.010) / Cell Host Microbe / Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA by Hayashi T (2012)
  25. B Kaplan-Türköz, et al., Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin. Proc Natl Acad Sci USA 109, 14640–14645 (2012). (10.1073/pnas.1206098109) / Proc Natl Acad Sci USA / Structural insights into Helicobacter pylori oncoprotein CagA interaction with β1 integrin by Kaplan-Türköz B (2012)
  26. AG Knudson, Two genetic hits (more or less) to cancer. Nat Rev Cancer 1, 157–162 (2001). (10.1038/35101031) / Nat Rev Cancer / Two genetic hits (more or less) to cancer by Knudson AG (2001)
  27. M Katoh, Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther 6, 832–839 (2007). (10.4161/cbt.6.6.4196) / Cancer Biol Ther / Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer by Katoh M (2007)
  28. QL Li, et al., Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113–124 (2002). (10.1016/S0092-8674(02)00690-6) / Cell / Causal relationship between the loss of RUNX3 expression and gastric cancer by Li QL (2002)
  29. Y Samuels-Lev, et al., ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8, 781–794 (2001). (10.1016/S1097-2765(01)00367-7) / Mol Cell / ASPP proteins specifically stimulate the apoptotic function of p53 by Samuels-Lev Y (2001)
  30. A Sullivan, X Lu, ASPP: A new family of oncogenes and tumour suppressor genes. Br J Cancer 96, 196–200 (2007). (10.1038/sj.bjc.6603525) / Br J Cancer / ASPP: A new family of oncogenes and tumour suppressor genes by Sullivan A (2007)
  31. W Cong, et al., ASPP2 regulates epithelial cell polarity through the PAR complex. Curr Biol 20, 1408–1414 (2010). (10.1016/j.cub.2010.06.024) / Curr Biol / ASPP2 regulates epithelial cell polarity through the PAR complex by Cong W (2010)
  32. XD Wang, et al., SUMO-modified nuclear cyclin D1 bypasses Ras-induced senescence. Cell Death Differ 18, 304–314 (2011). (10.1038/cdd.2010.101) / Cell Death Differ / SUMO-modified nuclear cyclin D1 bypasses Ras-induced senescence by Wang XD (2011)
  33. Y Wang, et al., Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci USA 109, 13325–13330 (2012). (10.1073/pnas.1120193109) / Proc Natl Acad Sci USA / Autophagic activity dictates the cellular response to oncogenic RAS by Wang Y (2012)
  34. R Sottocornola, et al., ASPP2 binds Par-3 and controls the polarity and proliferation of neural progenitors during CNS development. Dev Cell 19, 126–137 (2010). (10.1016/j.devcel.2010.06.003) / Dev Cell / ASPP2 binds Par-3 and controls the polarity and proliferation of neural progenitors during CNS development by Sottocornola R (2010)
  35. DC Sgroi, et al., In vivo gene expression profile analysis of human breast cancer progression. Cancer Res 59, 5656–5661 (1999). / Cancer Res / In vivo gene expression profile analysis of human breast cancer progression by Sgroi DC (1999)
  36. L Tordella, et al., ASPP2 suppresses squamous cell carcinoma via RelA/p65-mediated repression of p63. Proc Natl Acad Sci USA 110, 17969–17974 (2013). (10.1073/pnas.1309362110) / Proc Natl Acad Sci USA / ASPP2 suppresses squamous cell carcinoma via RelA/p65-mediated repression of p63 by Tordella L (2013)
  37. SW Park, CH An, SS Kim, NJ Yoo, SH Lee, Mutational analysis of ASPP1 and ASPP2 genes, a p53-related gene, in gastric and cololorectal cancers with microsatellite instability. Gut Liver 4, 292–293 (2010). (10.5009/gnl.2010.4.2.292) / Gut Liver / Mutational analysis of ASPP1 and ASPP2 genes, a p53-related gene, in gastric and cololorectal cancers with microsatellite instability by Park SW (2010)
  38. LL Eftang, Y Esbensen, TM Tannæs, IR Bukholm, G Bukholm, Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells. BMC Microbiol 12, 9 (2012). (10.1186/1471-2180-12-9) / BMC Microbiol / Interleukin-8 is the single most up-regulated gene in whole genome profiling of H. pylori exposed gastric epithelial cells by Eftang LL (2012)
  39. LE Wroblewski, RM Peek, KT Wilson, Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev 23, 713–739 (2010). (10.1128/CMR.00011-10) / Clin Microbiol Rev / Helicobacter pylori and gastric cancer: Factors that modulate disease risk by Wroblewski LE (2010)
  40. MJ Blaser, et al., Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55, 2111–2115 (1995). / Cancer Res / Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach by Blaser MJ (1995)
  41. S Rotem, C Katz, A Friedler, Insights into the structure and protein-protein interactions of the pro-apoptotic protein ASPP2. Biochem Soc Trans 35, 966–969 (2007). (10.1042/BST0350966) / Biochem Soc Trans / Insights into the structure and protein-protein interactions of the pro-apoptotic protein ASPP2 by Rotem S (2007)
  42. L Naumovski, ML Cleary, The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M. Mol Cell Biol 16, 3884–3892 (1996). (10.1128/MCB.16.7.3884) / Mol Cell Biol / The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M by Naumovski L (1996)
  43. JP Yang, et al., NF-kappaB subunit p65 binds to 53BP2 and inhibits cell death induced by 53BP2. Oncogene 18, 5177–5186 (1999). (10.1038/sj.onc.1202904) / Oncogene / NF-kappaB subunit p65 binds to 53BP2 and inhibits cell death induced by 53BP2 by Yang JP (1999)
  44. S Gorina, NP Pavletich, Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274, 1001–1005 (1996). (10.1126/science.274.5289.1001) / Science / Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2 by Gorina S (1996)
  45. S Rotem-Bamberger, C Katz, A Friedler, Regulation of ASPP2 interaction with p53 core domain by an intramolecular autoinhibitory mechanism. PLoS ONE 8, e58470 (2013). (10.1371/journal.pone.0058470) / PLoS ONE / Regulation of ASPP2 interaction with p53 core domain by an intramolecular autoinhibitory mechanism by Rotem-Bamberger S (2013)
  46. S Tan, JM Noto, J Romero-Gallo, RM Peek, MR Amieva, Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog 7, e1002050 (2011). (10.1371/journal.ppat.1002050) / PLoS Pathog / Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface by Tan S (2011)
  47. S Tan, LS Tompkins, MR Amieva, Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche. PLoS Pathog 5, e1000407 (2009). (10.1371/journal.ppat.1000407) / PLoS Pathog / Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche by Tan S (2009)
  48. S Umehara, H Higashi, N Ohnishi, M Asaka, M Hatakeyama, Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22, 8337–8342 (2003). (10.1038/sj.onc.1207028) / Oncogene / Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma by Umehara S (2003)
  49. A Oldani, et al., Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog 5, e1000603 (2009). (10.1371/journal.ppat.1000603) / PLoS Pathog / Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells by Oldani A (2009)
  50. Z Otwinowski, W Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326 (1997). (10.1016/S0076-6879(97)76066-X) / Methods Enzymol / Processing of X-ray diffraction data collected in oscillation mode by Otwinowski Z (1997)
  51. GM Sheldrick, A short history of SHELX. Acta Crystallogr A 64, 112–122 (2008). (10.1107/S0108767307043930) / Acta Crystallogr A / A short history of SHELX by Sheldrick GM (2008)
  52. G Langer, SX Cohen, VS Lamzin, A Perrakis, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3, 1171–1179 (2008). (10.1038/nprot.2008.91) / Nat Protoc / Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 by Langer G (2008)
  53. P Emsley, B Lohkamp, WG Scott, K Cowtan, Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501 (2010). (10.1107/S0907444910007493) / Acta Crystallogr D Biol Crystallogr / Features and development of Coot by Emsley P (2010)
  54. GN Murshudov, AA Vagin, EJ Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240–255 (1997). (10.1107/S0907444996012255) / Acta Crystallogr D Biol Crystallogr / Refinement of macromolecular structures by the maximum-likelihood method by Murshudov GN (1997)
  55. S McNicholas, E Potterton, KS Wilson, ME Noble, Presenting your structures: The CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67, 386–394 (2011). (10.1107/S0907444911007281) / Acta Crystallogr D Biol Crystallogr / Presenting your structures: The CCP4mg molecular-graphics software by McNicholas S (2011)
Dates
Type When
Created 11 years, 7 months ago (Jan. 13, 2014, 9:39 p.m.)
Deposited 3 years, 2 months ago (June 7, 2022, 8:09 a.m.)
Indexed 3 months, 3 weeks ago (May 1, 2025, 11:44 a.m.)
Issued 11 years, 7 months ago (Jan. 13, 2014)
Published 11 years, 7 months ago (Jan. 13, 2014)
Published Online 11 years, 7 months ago (Jan. 13, 2014)
Published Print 11 years, 7 months ago (Jan. 28, 2014)
Funders 0

None

@article{Ne_i__2014, title={Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2}, volume={111}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1320631111}, DOI={10.1073/pnas.1320631111}, number={4}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Nešić, Dragana and Buti, Ludovico and Lu, Xin and Stebbins, C. Erec}, year={2014}, month=jan, pages={1562–1567} }