Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Significance Here we present important findings related to biologically derived pigments for potential use as battery electrodes. Namely, we report the synthesis, fabrication, and characterization of melanins as materials for use in aqueous sodium-ion batteries. We demonstrate the use of naturally occurring melanins as active electrode materials in charge storage devices. Furthermore, the performance of melanin anodes is comparable to many commonly available synthetic organic electrode materials. The structure–property relationships that govern the storage capacity in melanin materials were also elucidated. These findings suggest that the unique chemistry and nanostructure in natural melanins increase the charge storage capacity compared with synthetic melanin analogues.

Bibliography

Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F., & Bettinger, C. J. (2013). Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proceedings of the National Academy of Sciences, 110(52), 20912–20917.

Authors 5
  1. Young Jo Kim (first)
  2. Wei Wu (additional)
  3. Sang-Eun Chun (additional)
  4. Jay F. Whitacre (additional)
  5. Christopher J. Bettinger (additional)
References 87 Referenced 297
  1. 10.1088/0034-4885/76/3/034501
  2. 10.1002/adma.201290011
  3. 10.1002/adfm.201090104
  4. 10.1002/adfm.201001031
  5. 10.1002/adfm.201300127
  6. 10.1002/adma.200902322
  7. 10.1002/adfm.200901363
  8. 10.1016/j.biomaterials.2009.02.018
  9. 10.1126/science.1226325
  10. 10.1126/science.1206157
  11. 10.1039/c3cp50929j
  12. 10.1007/s11708-008-0016-3
  13. 10.1016/j.jpowsour.2008.03.049
  14. 10.1002/aenm.201200598
  15. 10.1149/2.054303jes
  16. 10.1039/c3tb20183j
  17. 10.1002/adma.201201205
  18. 10.1038/nmat2372
  19. 10.1039/C0CC04440G
  20. 10.1002/cssc.200700161
  21. Reddy ALM et al. (2012) Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes. Sci Rep 2:960. (10.1038/srep00960)
  22. 10.1039/c3ta00019b
  23. 10.1021/nl903949m
  24. 10.1002/adma.201201329
  25. 10.1002/adma.201101067
  26. 10.1038/ncomms2481
  27. 10.1002/adma.201100894
  28. 10.1021/nn300920e
  29. Mai L et al. (2013) Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci Rep 3:1718. (10.1038/srep01718)
  30. 10.1039/c2ee02781j
  31. 10.1039/c2jm31364b
  32. 10.1021/ma060261e
  33. 10.1126/science.1215159
  34. 10.1021/ie900189j
  35. 10.1039/c2ee23599d
  36. 10.1039/C2RA22375A
  37. 10.1016/j.biortech.2012.04.019
  38. 10.1016/j.jpowsour.2012.04.018
  39. 10.1073/pnas.1119948109
  40. 10.1002/anie.200803786
  41. 10.1111/j.1600-0749.2006.00345.x
  42. 10.1111/j.1755-148X.2009.00610.x
  43. 10.1021/jp071439h
  44. 10.1562/2006-02-23-RA-809
  45. 10.1007/s00253-011-3777-2
  46. 10.1111/j.1755-148X.2012.01011.x
  47. 10.1039/b902507c
  48. 10.1529/biophysj.107.121087
  49. 10.1103/PhysRevB.80.174203
  50. 10.1103/PhysRevLett.97.218102
  51. 10.1021/nn305305d
  52. 10.1016/j.electacta.2010.12.095
  53. 10.1016/j.bmcl.2012.07.027
  54. 10.1021/ma9023558
  55. 10.1002/cssc.201200680
  56. 10.1016/j.carbon.2013.01.061
  57. 10.1351/pac198557040603
  58. 10.1073/pnas.1015862108
  59. 10.1562/0031-8655(2004)080<0477:BOMITM>2.0.CO;2
  60. 10.1007/s00723-009-0001-y
  61. 10.1038/ncomms1819
  62. 10.1016/j.biomaterials.2003.08.053
  63. 10.1039/C0NR00664E
  64. 10.1021/cm902876u
  65. 10.1016/j.micromeso.2009.12.024
  66. 10.1016/j.molstruc.2004.11.074
  67. 10.1016/j.molstruc.2007.03.026
  68. 10.1016/j.carbon.2011.01.059
  69. Glowacki ED Irimia-Vladu M Bauer S Sariciftci NS (2013) Hydrogen bonds in molecular solids - from biological systems to organic electronics. J Mater Chem B 1(31):3742–3753. (10.1039/c3tb20193g)
  70. 10.1039/C2CC16859F
  71. 10.1002/adma.201203119
  72. 10.1002/adma.201003525
  73. 10.1021/cm101377h
  74. 10.1021/cm200450y
  75. 10.1021/nl203193q
  76. 10.1021/ja9024897
  77. 10.1016/j.jpowsour.2006.08.021
  78. 10.1016/0378-7753(94)80053-7
  79. 10.1016/j.elecom.2010.01.020
  80. 10.1038/nnano.2011.13
  81. 10.1016/B978-008044463-5/50016-9
  82. 10.1002/adma.200902812
  83. 10.1002/adma.201003587
  84. 10.1002/adhm.201200071
  85. Robertson T et al. (2010) US Patent 2010/0185055 A1.
  86. 10.1002/adfm.201200691
  87. 10.1149/1.3518416
Dates
Type When
Created 11 years, 8 months ago (Dec. 10, 2013, 12:11 a.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 11:18 p.m.)
Indexed 10 hours, 57 minutes ago (Aug. 27, 2025, 11:32 a.m.)
Issued 11 years, 8 months ago (Dec. 9, 2013)
Published 11 years, 8 months ago (Dec. 9, 2013)
Published Online 11 years, 8 months ago (Dec. 9, 2013)
Published Print 11 years, 8 months ago (Dec. 24, 2013)
Funders 0

None

@article{Kim_2013, title={Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices}, volume={110}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1314345110}, DOI={10.1073/pnas.1314345110}, number={52}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Kim, Young Jo and Wu, Wei and Chun, Sang-Eun and Whitacre, Jay F. and Bettinger, Christopher J.}, year={2013}, month=dec, pages={20912–20917} }