Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Significance Type IV pili are long, thin fibers, formed mainly of polymers of a single pilin protein, which are displayed on the surfaces of many bacteria, including several human pathogens. Here, we report three-dimensional reconstructions of the PilMNO inner membrane complex, alone and in complex with pilin protein, through a combination of X-ray crystallography and electron microscopy. PilMNO forms a dimeric T-shaped structure, binding two copies of the pilin protein at its extremities. The results provide a structural model for the way in which pilin is harvested from the inner membrane and made available to other components of the type IV pilus biogenesis machinery.

Bibliography

Karuppiah, V., Collins, R. F., Thistlethwaite, A., Gao, Y., & Derrick, J. P. (2013). Structure and assembly of an inner membrane platform for initiation of type IV pilus biogenesis. Proceedings of the National Academy of Sciences, 110(48).

Authors 5
  1. Vijaykumar Karuppiah (first)
  2. Richard F. Collins (additional)
  3. Angela Thistlethwaite (additional)
  4. Ya Gao (additional)
  5. Jeremy P. Derrick (additional)
References 70 Referenced 58
  1. V Pelicic, Type IV pili: E pluribus unum? Mol Microbiol 68, 827–837 (2008). (10.1111/j.1365-2958.2008.06197.x) / Mol Microbiol / Type IV pili: E pluribus unum? by Pelicic V (2008)
  2. CL Giltner, Y Nguyen, LL Burrows, Type IV pilin proteins: Versatile molecular modules. Microbiol Mol Biol Rev 76, 740–772 (2012). (10.1128/MMBR.00035-12) / Microbiol Mol Biol Rev / Type IV pilin proteins: Versatile molecular modules by Giltner CL (2012)
  3. L Craig, J Li, Type IV pili: Paradoxes in form and function. Curr Opin Struct Biol 18, 267–277 (2008). (10.1016/j.sbi.2007.12.009) / Curr Opin Struct Biol / Type IV pili: Paradoxes in form and function by Craig L (2008)
  4. M Wolfgang, JPM van Putten, SF Hayes, D Dorward, M Koomey, Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J 19, 6408–6418 (2000). (10.1093/emboj/19.23.6408) / EMBO J / Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili by Wolfgang M (2000)
  5. JS Mattick, Type IV pili and twitching motility. Annu Rev Microbiol 56, 289–314 (2002). (10.1146/annurev.micro.56.012302.160938) / Annu Rev Microbiol / Type IV pili and twitching motility by Mattick JS (2002)
  6. LL Burrows, Weapons of mass retraction. Mol Microbiol 57, 878–888 (2005). (10.1111/j.1365-2958.2005.04703.x) / Mol Microbiol / Weapons of mass retraction by Burrows LL (2005)
  7. E Carbonnelle, S Helaine, X Nassif, V Pelicic, A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61, 1510–1522 (2006). (10.1111/j.1365-2958.2006.05341.x) / Mol Microbiol / A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili by Carbonnelle E (2006)
  8. J-L Berry, et al., Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis. PLoS Pathog 8, e1002923 (2012). (10.1371/journal.ppat.1002923) / PLoS Pathog / Structure and assembly of a trans-periplasmic channel for type IV pili in Neisseria meningitidis by Berry J-L (2012)
  9. RF Collins, et al., Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 A resolution. J Biol Chem 279, 39750–39756 (2004). (10.1074/jbc.M405971200) / J Biol Chem / Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 A resolution by Collins RF (2004)
  10. LS McLaughlin, RJF Haft, KT Forest, Structural insights into the Type II secretion nanomachine. Curr Opin Struct Biol 22, 208–216 (2012). (10.1016/j.sbi.2012.02.005) / Curr Opin Struct Biol / Structural insights into the Type II secretion nanomachine by McLaughlin LS (2012)
  11. V Karuppiah, JP Derrick, Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus. J Biol Chem 286, 24434–24442 (2011). (10.1074/jbc.M111.243535) / J Biol Chem / Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex from Thermus thermophilus by Karuppiah V (2011)
  12. LM Sampaleanu, et al., Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J Mol Biol 394, 143–159 (2009). (10.1016/j.jmb.2009.09.037) / J Mol Biol / Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex by Sampaleanu LM (2009)
  13. S Tammam, et al., Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. Mol Microbiol 82, 1496–1514 (2011). (10.1111/j.1365-2958.2011.07903.x) / Mol Microbiol / Characterization of the PilN, PilO and PilP type IVa pilus subcomplex by Tammam S (2011)
  14. J Rumszauer, C Schwarzenlander, B Averhoff, Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 273, 3261–3272 (2006). (10.1111/j.1742-4658.2006.05335.x) / FEBS J / Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27 by Rumszauer J (2006)
  15. A Friedrich, C Prust, T Hartsch, A Henne, B Averhoff, Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 68, 745–755 (2002). (10.1128/AEM.68.2.745-755.2002) / Appl Environ Microbiol / Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27 by Friedrich A (2002)
  16. I Rose, et al., Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27. Extremophiles 15, 191–202 (2011). (10.1007/s00792-010-0343-2) / Extremophiles / Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27 by Rose I (2011)
  17. L Craig, et al., Type IV pilus structure by cryo-electron microscopy and crystallography: Implications for pilus assembly and functions. Mol Cell 23, 651–662 (2006). (10.1016/j.molcel.2006.07.004) / Mol Cell / Type IV pilus structure by cryo-electron microscopy and crystallography: Implications for pilus assembly and functions by Craig L (2006)
  18. HE Parge, et al., Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature 378, 32–38 (1995). (10.1038/378032a0) / Nature / Structure of the fibre-forming protein pilin at 2.6 A resolution by Parge HE (1995)
  19. L Craig, et al., Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11, 1139–1150 (2003). (10.1016/S1097-2765(03)00170-9) / Mol Cell / Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin by Craig L (2003)
  20. S Ramboarina, et al., Structure of the bundle-forming pilus from enteropathogenic Escherichia coli. J Biol Chem 280, 40252–40260 (2005). (10.1074/jbc.M508099200) / J Biol Chem / Structure of the bundle-forming pilus from enteropathogenic Escherichia coli by Ramboarina S (2005)
  21. S Helaine, DH Dyer, X Nassif, V Pelicic, KT Forest, 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili. Proc Natl Acad Sci USA 104, 15888–15893 (2007). (10.1073/pnas.0707581104) / Proc Natl Acad Sci USA / 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili by Helaine S (2007)
  22. GF Audette, RT Irvin, B Hazes, Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture. Biochemistry 43, 11427–11435 (2004). (10.1021/bi048957s) / Biochemistry / Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture by Audette GF (2004)
  23. S Hartung, et al., Ultrahigh resolution and full-length pilin structures with insights for filament assembly, pathogenic functions, and vaccine potential. J Biol Chem 286, 44254–44265 (2011). (10.1074/jbc.M111.297242) / J Biol Chem / Ultrahigh resolution and full-length pilin structures with insights for filament assembly, pathogenic functions, and vaccine potential by Hartung S (2011)
  24. J Abendroth, AC Kreger, WGJ Hol, The dimer formed by the periplasmic domain of EpsL from the type 2 secretion system of Vibrio parahaemolyticus. J Struct Biol 168, 313–322 (2009). (10.1016/j.jsb.2009.07.022) / J Struct Biol / The dimer formed by the periplasmic domain of EpsL from the type 2 secretion system of Vibrio parahaemolyticus by Abendroth J (2009)
  25. E Krissinel, K Henrick, Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774–797 (2007). (10.1016/j.jmb.2007.05.022) / J Mol Biol / Inference of macromolecular assemblies from crystalline state by Krissinel E (2007)
  26. H Ashkenazy, E Erez, E Martz, T Pupko, N Ben-Tal, ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38, W529–W533 (2010). (10.1093/nar/gkq399) / Nucleic Acids Res / ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids by Ashkenazy H (2010)
  27. D Schneidman-Duhovny, Y Inbar, R Nussinov, HJ Wolfson, PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res 33, W363–W367 (2005). (10.1093/nar/gki481) / Nucleic Acids Res / PatchDock and SymmDock: Servers for rigid and symmetric docking by Schneidman-Duhovny D (2005)
  28. MD Gray, M Bagdasarian, WGJ Hol, M Sandkvist, In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae. Mol Microbiol 79, 786–798 (2011). (10.1111/j.1365-2958.2010.07487.x) / Mol Microbiol / In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae by Gray MD (2011)
  29. S Tammam, et al., PilMNOPQ from the Pseudomonas aeruginosa type IV pilus system form a transenvelope protein interaction network that interacts with PilA. J Bacteriol 195, 2126–2135 (2013). (10.1128/JB.00032-13) / J Bacteriol / PilMNOPQ from the Pseudomonas aeruginosa type IV pilus system form a transenvelope protein interaction network that interacts with PilA by Tammam S (2013)
  30. M Georgiadou, M Castagnini, G Karimova, D Ladant, V Pelicic, Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: Characterization of a subcomplex involved in pilus assembly. Mol Microbiol 84, 857–873 (2012). (10.1111/j.1365-2958.2012.08062.x) / Mol Microbiol / Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: Characterization of a subcomplex involved in pilus assembly by Georgiadou M (2012)
  31. KV Korotkov, T Gonen, WGJ Hol, Secretins: Dynamic channels for protein transport across membranes. Trends Biochem Sci 36, 433–443 (2011). (10.1016/j.tibs.2011.04.002) / Trends Biochem Sci / Secretins: Dynamic channels for protein transport across membranes by Korotkov KV (2011)
  32. SL Reichow, KV Korotkov, WGJ Hol, T Gonen, Structure of the cholera toxin secretion channel in its closed state. Nat Struct Mol Biol 17, 1226–1232 (2010). (10.1038/nsmb.1910) / Nat Struct Mol Biol / Structure of the cholera toxin secretion channel in its closed state by Reichow SL (2010)
  33. SV Balasingham, et al., Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol 189, 5716–5727 (2007). (10.1128/JB.00060-07) / J Bacteriol / Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis by Balasingham SV (2007)
  34. KV Korotkov, et al., Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog 7, e1002228 (2011). (10.1371/journal.ppat.1002228) / PLoS Pathog / Structural and functional studies on the interaction of GspC and GspD in the type II secretion system by Korotkov KV (2011)
  35. AP Golovanov, et al., The solution structure of a domain from the Neisseria meningitidis lipoprotein PilP reveals a new beta-sandwich fold. J Mol Biol 364, 186–195 (2006). (10.1016/j.jmb.2006.08.078) / J Mol Biol / The solution structure of a domain from the Neisseria meningitidis lipoprotein PilP reveals a new beta-sandwich fold by Golovanov AP (2006)
  36. M Ayers, et al., PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin. J Mol Biol 394, 128–142 (2009). (10.1016/j.jmb.2009.09.034) / J Mol Biol / PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin by Ayers M (2009)
  37. P Wendler, S Ciniawsky, M Kock, S Kube, Structure and function of the AAA+ nucleotide binding pocket. Biochim Biophys Acta 1823, 2–14 (2012). (10.1016/j.bbamcr.2011.06.014) / Biochim Biophys Acta / Structure and function of the AAA+ nucleotide binding pocket by Wendler P (2012)
  38. RF Collins, D Hassan, V Karuppiah, A Thistlethwaite, JP Derrick, Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus. Biochem J 450, 417–425 (2013). (10.1042/BJ20121599) / Biochem J / Structure and mechanism of the PilF DNA transformation ATPase from Thermus thermophilus by Collins RF (2013)
  39. Y Chen, et al., Structure and function of the XpsE N-terminal domain, an essential component of the Xanthomonas campestris type II secretion system. J Biol Chem 280, 42356–42363 (2005). (10.1074/jbc.M506843200) / J Biol Chem / Structure and function of the XpsE N-terminal domain, an essential component of the Xanthomonas campestris type II secretion system by Chen Y (2005)
  40. J Abendroth, P Murphy, M Sandkvist, M Bagdasarian, WG Hol, The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J Mol Biol 348, 845–855 (2005). (10.1016/j.jmb.2005.02.061) / J Mol Biol / The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae by Abendroth J (2005)
  41. A Yamagata, et al., Structure of an essential type IV pilus biogenesis protein provides insights into pilus and type II secretion systems. J Mol Biol 419, 110–124 (2012). (10.1016/j.jmb.2012.02.041) / J Mol Biol / Structure of an essential type IV pilus biogenesis protein provides insights into pilus and type II secretion systems by Yamagata A (2012)
  42. EI Milgotina, JA Lieberman, MS Donnenberg, The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol Microbiol 81, 1125–1127 (2011). (10.1111/j.1365-2958.2011.07771.x) / Mol Microbiol / The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine by Milgotina EI (2011)
  43. J Abendroth, M Bagdasarian, M Sandkvist, WGJ Hol, The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: An unusual member of the actin-like ATPase superfamily. J Mol Biol 344, 619–633 (2004). (10.1016/j.jmb.2004.09.062) / J Mol Biol / The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: An unusual member of the actin-like ATPase superfamily by Abendroth J (2004)
  44. C Lu, et al., Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure 21, 1707–1717 (2013). (10.1016/j.str.2013.06.027) / Structure / Hexamers of the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity by Lu C (2013)
  45. DA Cisneros, PJ Bond, AP Pugsley, M Campos, O Francetic, Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J 31, 1041–1053 (2012). (10.1038/emboj.2011.454) / EMBO J / Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation by Cisneros DA (2012)
  46. W Kabsch, XDS. Acta Crystallogr D Biol Crystallogr 66, 125–132 (2010). (10.1107/S0907444909047337) / Acta Crystallogr D Biol Crystallogr / XDS by Kabsch W (2010)
  47. G Winter, xia2: An expert system for macromolecular crystallography data reduction. J Appl Cryst 43, 186–190 (2010). (10.1107/S0021889809045701) / J Appl Cryst / xia2: An expert system for macromolecular crystallography data reduction by Winter G (2010)
  48. PR Evans, An introduction to data reduction: Space-group determination, scaling and intensity statistics. Acta Crystallogr D Biol Crystallogr 67, 282–292 (2011). (10.1107/S090744491003982X) / Acta Crystallogr D Biol Crystallogr / An introduction to data reduction: Space-group determination, scaling and intensity statistics by Evans PR (2011)
  49. TC Terwilliger, et al., Decision-making in structure solution using Bayesian estimates of map quality: The PHENIX AutoSol wizard. Acta Crystallogr D Biol Crystallogr 65, 582–601 (2009). (10.1107/S0907444909012098) / Acta Crystallogr D Biol Crystallogr / Decision-making in structure solution using Bayesian estimates of map quality: The PHENIX AutoSol wizard by Terwilliger TC (2009)
  50. PD Adams, et al., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221 (2010). (10.1107/S0907444909052925) / Acta Crystallogr D Biol Crystallogr / PHENIX: A comprehensive Python-based system for macromolecular structure solution by Adams PD (2010)
  51. TC Terwilliger, et al., Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64, 61–69 (2008). (10.1107/S090744490705024X) / Acta Crystallogr D Biol Crystallogr / Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard by Terwilliger TC (2008)
  52. AJ McCoy, et al., Phaser crystallographic software. J Appl Cryst 40, 658–674 (2007). (10.1107/S0021889807021206) / J Appl Cryst / Phaser crystallographic software by McCoy AJ (2007)
  53. PV Afonine, et al., Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68, 352–367 (2012). (10.1107/S0907444912001308) / Acta Crystallogr D Biol Crystallogr / Towards automated crystallographic structure refinement with phenix.refine by Afonine PV (2012)
  54. P Emsley, B Lohkamp, WG Scott, K Cowtan, Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501 (2010). (10.1107/S0907444910007493) / Acta Crystallogr D Biol Crystallogr / Features and development of Coot by Emsley P (2010)
  55. AGW Leslie, HR Powell, Processing diffraction data with MOSFLM. NATO Sci Ser II Math 245, 41–51 (2007). / NATO Sci Ser II Math / Processing diffraction data with MOSFLM by Leslie AGW (2007)
  56. MD Winn, et al., Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235–242 (2011). (10.1107/S0907444910045749) / Acta Crystallogr D Biol Crystallogr / Overview of the CCP4 suite and current developments by Winn MD (2011)
  57. GM Sheldrick, A short history of SHELX. Acta Crystallogr A 64, 112–122 (2008). (10.1107/S0108767307043930) / Acta Crystallogr A / A short history of SHELX by Sheldrick GM (2008)
  58. G Bricogne, C Vonrhein, C Flensburg, M Schiltz, W Paciorek, Generation, representation and flow of phase information in structure determination: Recent developments in and around SHARP 2.0. Acta Crystallogr D Biol Crystallogr 59, 2023–2030 (2003). (10.1107/S0907444903017694) / Acta Crystallogr D Biol Crystallogr / Generation, representation and flow of phase information in structure determination: Recent developments in and around SHARP 2.0 by Bricogne G (2003)
  59. K Cowtan, Recent developments in classical density modification. Acta Crystallogr D Biol Crystallogr 66, 470–478 (2010). (10.1107/S090744490903947X) / Acta Crystallogr D Biol Crystallogr / Recent developments in classical density modification by Cowtan K (2010)
  60. K Cowtan, The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62, 1002–1011 (2006). (10.1107/S0907444906022116) / Acta Crystallogr D Biol Crystallogr / The Buccaneer software for automated model building. 1. Tracing protein chains by Cowtan K (2006)
  61. C Vonrhein, E Blanc, P Roversi, G Bricogne, Automated structure solution with autoSHARP. Methods Mol Biol 364, 215–230 (2007). / Methods Mol Biol / Automated structure solution with autoSHARP by Vonrhein C (2007)
  62. VB Chen, et al., MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12–21 (2010). (10.1107/S0907444909042073) / Acta Crystallogr D Biol Crystallogr / MolProbity: All-atom structure validation for macromolecular crystallography by Chen VB (2010)
  63. RA Laskowski, MW McArthur, DS Moss, JM Thornton, PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 24, 946–950 (1993). / J Appl Cryst / PROCHECK: A program to check the stereochemical quality of protein structures by Laskowski RA (1993)
  64. G Tang, et al., EMAN2: An extensible image processing suite for electron microscopy. J Struct Biol 157, 38–46 (2007). (10.1016/j.jsb.2006.05.009) / J Struct Biol / EMAN2: An extensible image processing suite for electron microscopy by Tang G (2007)
  65. D Schneidman-Duhovny, Y Inbar, R Nussinov, HJ Wolfson, Geometry-based flexible and symmetric protein docking. Proteins 60, 224–231 (2005). (10.1002/prot.20562) / Proteins / Geometry-based flexible and symmetric protein docking by Schneidman-Duhovny D (2005)
  66. EF Pettersen, et al., UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612 (2004). (10.1002/jcc.20084) / J Comput Chem / UCSF Chimera—a visualization system for exploratory research and analysis by Pettersen EF (2004)
  67. L Bordoli, et al., Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4, 1–13 (2009). (10.1038/nprot.2008.197) / Nat Protoc / Protein structure homology modeling using SWISS-MODEL workspace by Bordoli L (2009)
  68. E Mashiach, D Schneidman-Duhovny, N Andrusier, R Nussinov, HJ Wolfson, FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36, W229–W232 (2008). (10.1093/nar/gkn186) / Nucleic Acids Res / FireDock: A web server for fast interaction refinement in molecular docking by Mashiach E (2008)
  69. L Potterton, et al., Developments in the CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr 60, 2288–2294 (2004). (10.1107/S0907444904023716) / Acta Crystallogr D Biol Crystallogr / Developments in the CCP4 molecular-graphics project by Potterton L (2004)
  70. K Diederichs, PA Karplus, Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4, 269–275 (1997). (10.1038/nsb0497-269) / Nat Struct Biol / Improved R-factors for diffraction data analysis in macromolecular crystallography by Diederichs K (1997)
Dates
Type When
Created 11 years, 9 months ago (Nov. 11, 2013, 11:48 p.m.)
Deposited 3 years, 2 months ago (June 7, 2022, 6:34 a.m.)
Indexed 3 weeks, 5 days ago (Aug. 3, 2025, 7:03 p.m.)
Issued 11 years, 9 months ago (Nov. 11, 2013)
Published 11 years, 9 months ago (Nov. 11, 2013)
Published Online 11 years, 9 months ago (Nov. 11, 2013)
Published Print 11 years, 9 months ago (Nov. 26, 2013)
Funders 0

None

@article{Karuppiah_2013, title={Structure and assembly of an inner membrane platform for initiation of type IV pilus biogenesis}, volume={110}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1312313110}, DOI={10.1073/pnas.1312313110}, number={48}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Karuppiah, Vijaykumar and Collins, Richard F. and Thistlethwaite, Angela and Gao, Ya and Derrick, Jeremy P.}, year={2013}, month=nov }