Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Cell–cell and cell–matrix adhesions play essential roles in the function of tissues. There is growing evidence for the importance of cross talk between these two adhesion types, yet little is known about the impact of these interactions on the mechanical coupling of cells to the extracellular matrix (ECM). Here, we combine experiment and theory to reveal how intercellular adhesions modulate forces transmitted to the ECM. In the absence of cadherin-based adhesions, primary mouse keratinocytes within a colony appear to act independently, with significant traction forces extending throughout the colony. In contrast, with strong cadherin-based adhesions, keratinocytes in a cohesive colony localize traction forces to the colony periphery. Through genetic or antibody-mediated loss of cadherin expression or function, we show that cadherin-based adhesions are essential for this mechanical cooperativity. A minimal physical model in which cell–cell adhesions modulate the physical cohesion between contractile cells is sufficient to recreate the spatial rearrangement of traction forces observed experimentally with varying strength of cadherin-based adhesions. This work defines the importance of cadherin-based cell–cell adhesions in coordinating mechanical activity of epithelial cells and has implications for the mechanical regulation of epithelial tissues during development, homeostasis, and disease.

Bibliography

Mertz, A. F., Che, Y., Banerjee, S., Goldstein, J. M., Rosowski, K. A., Revilla, S. F., Niessen, C. M., Marchetti, M. C., Dufresne, E. R., & Horsley, V. (2012). Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces. Proceedings of the National Academy of Sciences, 110(3), 842–847.

Authors 10
  1. Aaron F. Mertz (first)
  2. Yonglu Che (additional)
  3. Shiladitya Banerjee (additional)
  4. Jill M. Goldstein (additional)
  5. Kathryn A. Rosowski (additional)
  6. Stephen F. Revilla (additional)
  7. Carien M. Niessen (additional)
  8. M. Cristina Marchetti (additional)
  9. Eric R. Dufresne (additional)
  10. Valerie Horsley (additional)
References 69 Referenced 217
  1. 10.1016/j.cell.2007.05.050
  2. 10.1016/j.cub.2007.11.049
  3. 10.1242/dev.030866
  4. 10.1242/dev.024166
  5. 10.1126/science.1208619
  6. 10.1152/physrev.1995.75.3.519
  7. 10.1016/S0006-3495(00)76850-0
  8. 10.1083/jcb.200405004
  9. 10.1103/PhysRevLett.72.2298
  10. 10.1016/j.medengphy.2011.09.030
  11. 10.1007/s12013-007-9002-3
  12. 10.1083/jcb.200910099
  13. 10.1016/S1534-5807(02)00259-9
  14. 10.1016/S0960-9822(00)00579-0
  15. 10.1073/pnas.0914547107
  16. 10.1073/pnas.1204390109
  17. 10.1038/35074532
  18. 10.1007/s10237-006-0068-4
  19. 10.1529/biophysj.107.113670
  20. 10.1016/j.ydbio.2004.11.012
  21. 10.1016/j.bpj.2009.10.044
  22. 10.1073/pnas.1002662107
  23. 10.1158/0008-5472.CAN-07-2938
  24. 10.1038/nphys1269
  25. 10.1073/pnas.1011123108
  26. 10.1038/nmat3025
  27. 10.1103/PhysRevLett.108.198101
  28. 10.1016/j.bpj.2009.01.005
  29. 10.1073/pnas.1203007109
  30. 10.1083/jcb.200506152
  31. 10.1083/jcb.200701058
  32. 10.1073/pnas.1106377109
  33. 10.1242/jcs.047878
  34. 10.1242/jcs.064618
  35. 10.1016/j.bpj.2012.06.009
  36. 10.1152/ajpcell.00195.2010
  37. 10.1016/S0006-3495(99)77386-8
  38. 10.1073/pnas.0705815104
  39. 10.1073/pnas.1005537107
  40. 10.1083/jcb.105.2.807
  41. 10.1097/BCR.0b013e318166da8c
  42. 10.1152/ajpcell.00270.2001
  43. 10.1002/jcp.1041430213
  44. 10.1111/j.1600-0625.2008.00775.x
  45. 10.1126/science.278.5342.1464
  46. 10.1038/sj.emboj.7600605
  47. 10.1038/jid.2009.17
  48. 10.1103/PhysRevLett.107.128101
  49. 10.1209/0295-5075/96/28003
  50. 10.1103/PhysRevLett.109.108101
  51. 10.1016/j.bpj.2012.02.016
  52. 10.1083/jcb.201001149
  53. 10.1091/mbc.e03-10-0745
  54. 10.1016/S0092-8674(00)81559-7
  55. 10.1152/ajpcell.1997.272.5.C1654
  56. 10.1523/JNEUROSCI.5331-07.2008
  57. 10.1038/ncb2055
  58. 10.1152/physrev.00004.2010
  59. 10.1016/j.devcel.2011.10.013
  60. 10.1083/jcb.201207148
  61. 10.1126/science.141.3579.401
  62. 10.1242/dev.01668
  63. 10.1016/j.gde.2007.05.002
  64. 10.1039/c0ib00052c
  65. 10.1083/jcb.150.5.1149
  66. 10.1016/S0962-8924(00)01802-X
  67. 10.1016/j.devcel.2009.01.008
  68. 10.1007/978-1-59745-060-7_14
  69. 10.1038/nature00820
Dates
Type When
Created 12 years, 8 months ago (Dec. 31, 2012, 10:18 p.m.)
Deposited 3 years, 4 months ago (April 15, 2022, 11:37 p.m.)
Indexed 41 minutes ago (Sept. 6, 2025, 9:03 a.m.)
Issued 12 years, 8 months ago (Dec. 31, 2012)
Published 12 years, 8 months ago (Dec. 31, 2012)
Published Online 12 years, 8 months ago (Dec. 31, 2012)
Published Print 12 years, 7 months ago (Jan. 15, 2013)
Funders 0

None

@article{Mertz_2012, title={Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces}, volume={110}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1217279110}, DOI={10.1073/pnas.1217279110}, number={3}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Mertz, Aaron F. and Che, Yonglu and Banerjee, Shiladitya and Goldstein, Jill M. and Rosowski, Kathryn A. and Revilla, Stephen F. and Niessen, Carien M. and Marchetti, M. Cristina and Dufresne, Eric R. and Horsley, Valerie}, year={2012}, month=dec, pages={842–847} }