Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Recombinational repair of replication forks can occur either to a crossover (XO) or noncrossover (non-XO) depending on Holliday junction resolution. Once the fork is repaired by recombination, PriA is important for restarting these forks in Escherichia coli . PriA mutants are Rec − and UV sensitive and have poor viability and 10-fold elevated basal levels of SOS expression. PriA sulB mutant cells and their nucleoids were studied by differential interference contrast and fluorescence microscopy of 4′,6-diamidino-2-phenylindole-stained log phase cells. Two populations of cells were seen. Eighty four percent appeared like wild type, and 16% of the cells were filamented and had poorly partitioned chromosomes (Par − ). To probe potential mechanisms leading to the two populations of cells, mutations were added to the priA sulB mutant. Mutating sulA or introducing lexA3 decreased, but did not eliminate filamentation or defects in partitioning. Mutating either recA or recB virtually eliminated the Par − phenotype. Filamentation in the recB mutant decreased to 3%, but increased to 28% in the recA mutant. The ability to resolve and/or branch migrate Holliday junctions also appeared crucial in the priA mutant because removing either recG or ruvC was lethal. Lastly, it was tested whether the ability to resolve chromosome dimers caused by XOs was important in a priA mutant by mutating dif and the C-terminal portion of ftsK . Mutation of dif showed no change in phenotype whereas ftsK1 ∷ cat was lethal with priA2 ∷ kan . A model is proposed where the PriA-independent pathway of replication restart functions at forks that have been repaired to non-XOs.

Bibliography

McCool, J. D., & Sandler, S. J. (2001). Effects of mutations involving cell division, recombination, and chromosome dimer resolution on a priA2 ∷ kan mutant. Proceedings of the National Academy of Sciences, 98(15), 8203–8210.

Authors 2
  1. Jesse D. McCool (first)
  2. Steven J. Sandler (additional)
References 50 Referenced 50
  1. 10.1038/35003501
  2. 10.1016/S0968-0004(00)01569-3
  3. 10.1016/S0968-0004(00)01565-6
  4. 10.3109/10408419409113552
  5. 10.1093/genetics/138.2.241
  6. 10.1128/JB.180.23.6269-6275.1998
  7. 10.1046/j.1365-2958.1999.01198.x
  8. 10.1128/JB.182.1.9-13.2000
  9. 10.1093/genetics/155.2.487
  10. 10.1016/0092-8674(88)90412-6
  11. 10.1074/jbc.274.35.25033
  12. 10.1006/jmbi.1997.1120
  13. 10.1093/genetics/143.1.5
  14. 10.1073/pnas.96.7.3552
  15. 10.1128/jb.176.7.1807-1812.1994
  16. 10.1128/jb.97.1.244-249.1969
  17. 10.1073/pnas.88.8.3029
  18. 10.1128/jb.173.21.6686-6693.1991
  19. 10.1128/jb.172.10.5602-5609.1990
  20. 10.1128/jb.144.1.185-191.1980
  21. 10.1046/j.1365-2958.1998.00651.x
  22. 10.1046/j.1365-2958.2000.01989.x
  23. 10.1016/S1097-2765(05)00095-X
  24. R G Lloyd, K B Low Escherichia coli and Salmonella, ed F C Neidhardt (Am. Soc. Microbiol., Washington, DC) 2, 2236–2255 (1996). / Escherichia coli and Salmonella by Lloyd R G (1996)
  25. P L Kuempel, J M Henson, L Dircks, M Tecklenburg, D F Lim New Biol 3, 799–811 (1991). / New Biol by Kuempel P L (1991)
  26. 10.1128/jb.177.21.6211-6222.1995
  27. 10.1128/JB.180.23.6424-6428.1998
  28. 10.1093/emboj/18.20.5724
  29. 10.1128/JB.182.14.4124-4127.2000
  30. 10.1046/j.1365-2958.1998.00986.x
  31. 10.1046/j.1365-2958.2000.01979.x
  32. 10.1128/jb.179.18.5878-5883.1997
  33. 10.1016/S0092-8674(00)81772-9
  34. 10.1101/gad.13.14.1861
  35. 10.1128/jb.173.17.5414-5418.1991
  36. 10.1016/S0092-8674(00)80621-2
  37. 10.1128/jb.175.14.4325-4334.1993
  38. 10.1128/MMBR.62.3.985-1019.1998
  39. 10.1046/j.1365-2958.1996.429959.x
  40. 10.1128/jb.177.3.566-572.1995
  41. 10.1126/science.282.5393.1516
  42. 10.1093/genetics/139.4.1483
  43. 10.1046/j.1365-2958.2000.01826.x
  44. G Walker Escherichia coli and Salmonella, ed F C Neidhardt (Am. Soc. Microbiol., Washington, DC) 1, 1400–1416 (1996). / Escherichia coli and Salmonella by Walker G (1996)
  45. 10.1046/j.1365-2958.1998.00958.x
  46. 10.1128/mr.53.1.1-24.1989
  47. 10.1093/genetics/93.2.321
  48. 10.1128/jb.176.12.3661-3672.1994
  49. 10.1128/jb.131.1.123-132.1977
  50. 10.1016/S0378-1119(00)00071-8
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 10:34 a.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 8:49 p.m.)
Indexed 1 month, 2 weeks ago (July 16, 2025, 8:19 a.m.)
Issued 24 years, 1 month ago (July 17, 2001)
Published 24 years, 1 month ago (July 17, 2001)
Published Online 24 years, 1 month ago (July 17, 2001)
Published Print 24 years, 1 month ago (July 17, 2001)
Funders 0

None

@article{McCool_2001, title={Effects of mutations involving cell division, recombination, and chromosome dimer resolution on a priA2 ∷ kan mutant}, volume={98}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.121007698}, DOI={10.1073/pnas.121007698}, number={15}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={McCool, Jesse D. and Sandler, Steven J.}, year={2001}, month=jul, pages={8203–8210} }