Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping- and temperature-dependence ARPES study of spectral gaps in Bi 2 Sr 2 CaCu 2 O 8+ δ , covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T c and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.

Bibliography

Vishik, I. M., Hashimoto, M., He, R.-H., Lee, W.-S., Schmitt, F., Lu, D., Moore, R. G., Zhang, C., Meevasana, W., Sasagawa, T., Uchida, S., Fujita, K., Ishida, S., Ishikado, M., Yoshida, Y., Eisaki, H., Hussain, Z., Devereaux, T. P., & Shen, Z.-X. (2012). Phase competition in trisected superconducting dome. Proceedings of the National Academy of Sciences, 109(45), 18332–18337.

Authors 19
  1. I. M. Vishik (first)
  2. M. Hashimoto (additional)
  3. Rui-Hua He (additional)
  4. Wei-Sheng Lee (additional)
  5. Felix Schmitt (additional)
  6. Donghui Lu (additional)
  7. R. G. Moore (additional)
  8. C. Zhang (additional)
  9. W. Meevasana (additional)
  10. T. Sasagawa (additional)
  11. S. Uchida (additional)
  12. Kazuhiro Fujita (additional)
  13. S. Ishida (additional)
  14. M. Ishikado (additional)
  15. Yoshiyuki Yoshida (additional)
  16. Hiroshi Eisaki (additional)
  17. Zahid Hussain (additional)
  18. Thomas P. Devereaux (additional)
  19. Zhi-Xun Shen (additional)
References 57 Referenced 232
  1. 10.1103/PhysRevLett.70.1553
  2. 10.1126/science.273.5273.325
  3. 10.1103/PhysRevB.54.R9678
  4. 10.1038/382051a0
  5. 10.1103/PhysRevLett.76.4841
  6. 10.1038/32366
  7. 10.1038/nphys334
  8. 10.1038/nature06219
  9. 10.1038/nature07644
  10. 10.1038/nphys1632
  11. 10.1126/science.1133411
  12. 10.1103/PhysRevLett.103.037004
  13. 10.1103/PhysRevLett.98.267004
  14. 10.1126/science.1198415
  15. 10.1103/PhysRevLett.101.207002
  16. 10.1103/PhysRevB.57.R11093
  17. 10.1073/pnas.1101008108
  18. 10.1038/nphys1456
  19. 10.1103/PhysRevLett.107.047003
  20. 10.1103/PhysRevB.69.054503
  21. 10.1103/PhysRevB.77.094516
  22. 10.1103/PhysRevLett.93.267001
  23. 10.1073/pnas.0913711107
  24. 10.1103/PhysRevB.83.054506
  25. 10.1088/1367-2630/12/10/105006
  26. 10.1103/PhysRevLett.94.147004
  27. 10.1126/science.1152309
  28. 10.1103/PhysRevB.70.144513
  29. 10.1103/PhysRevB.68.180501
  30. 10.1038/nphys725
  31. 10.1126/science.1174338
  32. 10.1103/PhysRevB.80.024516
  33. 10.1103/PhysRevB.67.220502
  34. 10.1126/science.289.5477.277
  35. 10.1038/nature09597
  36. 10.1103/PhysRevLett.84.5860
  37. 10.1038/nphys1159
  38. 10.1016/S0921-4534(00)01524-0
  39. 10.1103/PhysRevLett.83.3709
  40. 10.1038/nphys1375
  41. 10.1103/PhysRevLett.102.107001
  42. 10.1103/PhysRevLett.94.047006
  43. 10.1088/0034-4885/74/2/022501
  44. 10.1103/PhysRevB.71.172507
  45. 10.1155/2010/681070
  46. 10.1088/0953-8984/23/38/385701
  47. 10.1103/PhysRevB.82.104516
  48. 10.1103/PhysRevLett.107.237001
  49. 10.1103/PhysRevLett.104.057006
  50. 10.1038/nature05881
  51. 10.1143/JPSJ.71.1535
  52. 10.1209/epl/i2002-00436-6
  53. 10.1038/nphys1851
  54. 10.1103/PhysRevB.51.12911
  55. 10.1126/science.1223532
  56. J Chang et al. Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y . Available at http://arxiv.org/abs/1206.4333 accessed Aug. 10 2012. (2012).
  57. E Razzoli et al. Evolution from a nodeless gap to d(x 2 -y 2 ) form in underdoped La 2-x Sr x CuO 4 . Available at http://arxiv.org/abs/1207.3486v1 accessed Aug. 10 2012. (2012).
Dates
Type When
Created 12 years, 10 months ago (Oct. 24, 2012, 1:27 a.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 8:55 p.m.)
Indexed 3 weeks, 2 days ago (Aug. 6, 2025, 8:43 a.m.)
Issued 12 years, 10 months ago (Oct. 10, 2012)
Published 12 years, 10 months ago (Oct. 10, 2012)
Published Online 12 years, 10 months ago (Oct. 10, 2012)
Published Print 12 years, 9 months ago (Nov. 6, 2012)
Funders 0

None

@article{Vishik_2012, title={Phase competition in trisected superconducting dome}, volume={109}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1209471109}, DOI={10.1073/pnas.1209471109}, number={45}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Vishik, I. M. and Hashimoto, M. and He, Rui-Hua and Lee, Wei-Sheng and Schmitt, Felix and Lu, Donghui and Moore, R. G. and Zhang, C. and Meevasana, W. and Sasagawa, T. and Uchida, S. and Fujita, Kazuhiro and Ishida, S. and Ishikado, M. and Yoshida, Yoshiyuki and Eisaki, Hiroshi and Hussain, Zahid and Devereaux, Thomas P. and Shen, Zhi-Xun}, year={2012}, month=oct, pages={18332–18337} }