Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

AcrAB-TolC is the major efflux protein complex in Escherichia coli extruding a vast variety of antimicrobial agents from the cell. The inner membrane component AcrB is a homotrimer, and it has been postulated that the monomers cycle consecutively through three conformational stages designated loose (L), tight (T), and open (O) in a concerted fashion. Binding of drugs has been shown at a periplasmic deep binding pocket in the T conformation. The initial drug-binding step and transport toward this drug-binding site has been elusive thus far. Here we report high resolution structures (1.9–2.25 Å) of AcrB/designed ankyrin repeat protein (DARPin) complexes with bound minocycline or doxorubicin. In the AcrB/doxorubicin cocrystal structure, binding of three doxorubicin molecules is apparent, with one doxorubicin molecule bound in the deep binding pocket of the T monomer and two doxorubicin molecules in a stacked sandwich arrangement in an access pocket at the lateral periplasmic cleft of the L monomer. This access pocket is separated from the deep binding pocket apparent in the T monomer by a switch-loop. The localization and conformational flexibility of this loop seems to be important for large substrates, because a G616N AcrB variant deficient in macrolide transport exhibits an altered conformation within this loop region. Transport seems to be a stepwise process of initial drug uptake in the access pocket of the L monomer and subsequent accommodation of the drug in the deep binding pocket during the L to T transition to the internal deep binding pocket of the T monomer.

Bibliography

Eicher, T., Cha, H., Seeger, M. A., Brandstätter, L., El-Delik, J., Bohnert, J. A., Kern, W. V., Verrey, F., Grütter, M. G., Diederichs, K., & Pos, K. M. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proceedings of the National Academy of Sciences, 109(15), 5687–5692.

Authors 11
  1. Thomas Eicher (first)
  2. Hi-jea Cha (additional)
  3. Markus A. Seeger (additional)
  4. Lorenz Brandstätter (additional)
  5. Jasmin El-Delik (additional)
  6. Jürgen A. Bohnert (additional)
  7. Winfried V. Kern (additional)
  8. François Verrey (additional)
  9. Markus G. Grütter (additional)
  10. Kay Diederichs (additional)
  11. Klaas M. Pos (additional)
References 43 Referenced 287
  1. H Nikaido, Y Takatsuka, Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 1794, 769–781 (2009). (10.1016/j.bbapap.2008.10.004) / Biochim Biophys Acta / Mechanisms of RND multidrug efflux pumps by Nikaido H (2009)
  2. CA Elkins, H Nikaido, Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 184, 6490–6498 (2002). (10.1128/JB.184.23.6490-6499.2002) / J Bacteriol / Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops by Elkins CA (2002)
  3. D Ma, et al., Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16, 45–55 (1995). (10.1111/j.1365-2958.1995.tb02390.x) / Mol Microbiol / Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli by Ma D (1995)
  4. JA Fralick, Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 178, 5803–5805 (1996). (10.1128/jb.178.19.5803-5805.1996) / J Bacteriol / Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli by Fralick JA (1996)
  5. MF Symmons, E Bokma, E Koronakis, C Hughes, V Koronakis, The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci USA 106, 7173–7178 (2009). (10.1073/pnas.0900693106) / Proc Natl Acad Sci USA / The assembled structure of a complete tripartite bacterial multidrug efflux pump by Symmons MF (2009)
  6. S Murakami, R Nakashima, E Yamashita, A Yamaguchi, Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593 (2002). (10.1038/nature01050) / Nature / Crystal structure of bacterial multidrug efflux transporter AcrB by Murakami S (2002)
  7. CC Su, et al., Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J Bacteriol 188, 7290–7296 (2006). (10.1128/JB.00684-06) / J Bacteriol / Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway by Su CC (2006)
  8. F Husain, M Bikhchandani, H Nikaido, Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli. J Bacteriol 193, 5847–5849 (2011). (10.1128/JB.05759-11) / J Bacteriol / Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli by Husain F (2011)
  9. MA Seeger, C von Ballmoos, F Verrey, KM Pos, Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: Evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry 48, 5801–5812 (2009). (10.1021/bi900446j) / Biochemistry / Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: Evidence from site-directed mutagenesis and carbodiimide labeling by Seeger MA (2009)
  10. S Murakami, R Nakashima, E Yamashita, T Matsumoto, A Yamaguchi, Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179 (2006). (10.1038/nature05076) / Nature / Crystal structures of a multidrug transporter reveal a functionally rotating mechanism by Murakami S (2006)
  11. MA Seeger, et al., Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298 (2006). (10.1126/science.1131542) / Science / Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism by Seeger MA (2006)
  12. G Sennhauser, P Amstutz, C Briand, O Storchenegger, MG Grütter, Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5, e7 (2007). (10.1371/journal.pbio.0050007) / PLoS Biol / Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors by Sennhauser G (2007)
  13. L Brandstätter, et al., Analysis of AcrB and AcrB/DARPin ligand complexes by LILBID MS. Biochim Biophys Acta 1808, 2189–2196 (2011). (10.1016/j.bbamem.2011.05.009) / Biochim Biophys Acta / Analysis of AcrB and AcrB/DARPin ligand complexes by LILBID MS by Brandstätter L (2011)
  14. PD Boyer, The ATP synthase—a splendid molecular machine. Annu Rev Biochem 66, 717–749 (1997). (10.1146/annurev.biochem.66.1.717) / Annu Rev Biochem / The ATP synthase—a splendid molecular machine by Boyer PD (1997)
  15. KM Pos, Drug transport mechanism of the AcrB efflux pump. Biochim Biophys Acta 1794, 782–793 (2009). (10.1016/j.bbapap.2008.12.015) / Biochim Biophys Acta / Drug transport mechanism of the AcrB efflux pump by Pos KM (2009)
  16. MA Seeger, et al., The AcrB efflux pump: Conformational cycling and peristalsis lead to multidrug resistance. Curr Drug Targets 9, 729–749 (2008). (10.2174/138945008785747789) / Curr Drug Targets / The AcrB efflux pump: Conformational cycling and peristalsis lead to multidrug resistance by Seeger MA (2008)
  17. SP Lim, H Nikaido, Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli. Antimicrob Agents Chemother 54, 1800–1806 (2010). (10.1128/AAC.01714-09) / Antimicrob Agents Chemother / Kinetic parameters of efflux of penicillins by the multidrug efflux transporter AcrAB-TolC of Escherichia coli by Lim SP (2010)
  18. K Nagano, H Nikaido, Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci USA 106, 5854–5858 (2009). (10.1073/pnas.0901695106) / Proc Natl Acad Sci USA / Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli by Nagano K (2009)
  19. Y Takatsuka, H Nikaido, Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. J Bacteriol 191, 1729–1737 (2009). (10.1128/JB.01441-08) / J Bacteriol / Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism by Takatsuka Y (2009)
  20. Y Takatsuka, H Nikaido, Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli. J Bacteriol 189, 8677–8684 (2007). (10.1128/JB.01127-07) / J Bacteriol / Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli by Takatsuka Y (2007)
  21. MA Seeger, et al., Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat Struct Mol Biol 15, 199–205 (2008). (10.1038/nsmb.1379) / Nat Struct Mol Biol / Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB by Seeger MA (2008)
  22. F Long, et al., Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature 467, 484–488 (2010). (10.1038/nature09395) / Nature / Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport by Long F (2010)
  23. D Das, et al., Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids. J Struct Biol 158, 494–502 (2007). (10.1016/j.jsb.2006.12.004) / J Struct Biol / Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids by Das D (2007)
  24. D Drew, et al., The structure of the efflux pump AcrB in complex with bile acid. Mol Membr Biol 25, 677–682 (2008). (10.1080/09687680802552257) / Mol Membr Biol / The structure of the efflux pump AcrB in complex with bile acid by Drew D (2008)
  25. S Törnroth-Horsefield, et al., Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 15, 1663–1673 (2007). (10.1016/j.str.2007.09.023) / Structure / Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist by Törnroth-Horsefield S (2007)
  26. EW Yu, G McDermott, HI Zgurskaya, H Nikaido, DE Koshland, Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300, 976–980 (2003). (10.1126/science.1083137) / Science / Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump by Yu EW (2003)
  27. EW Yu, JR Aires, G McDermott, H Nikaido, A periplasmic drug-binding site of the AcrB multidrug efflux pump: A crystallographic and site-directed mutagenesis study. J Bacteriol 187, 6804–6815 (2005). (10.1128/JB.187.19.6804-6815.2005) / J Bacteriol / A periplasmic drug-binding site of the AcrB multidrug efflux pump: A crystallographic and site-directed mutagenesis study by Yu EW (2005)
  28. F Husain, H Nikaido, Substrate path in the AcrB multidrug efflux pump of Escherichia coli. Mol Microbiol 78, 320–330 (2010). (10.1111/j.1365-2958.2010.07330.x) / Mol Microbiol / Substrate path in the AcrB multidrug efflux pump of Escherichia coli by Husain F (2010)
  29. C Wehmeier, S Schuster, E Fähnrich, WV Kern, JA Bohnert, Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance. Antimicrob Agents Chemother 53, 329–330 (2009). (10.1128/AAC.00921-08) / Antimicrob Agents Chemother / Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance by Wehmeier C (2009)
  30. JA Bohnert, et al., Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J Bacteriol 190, 8225–8229 (2008). (10.1128/JB.00912-08) / J Bacteriol / Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB by Bohnert JA (2008)
  31. XQ Yao, H Kenzaki, S Murakami, S Takada, Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat Commun 1, 117 (2010). (10.1038/ncomms1116) / Nat Commun / Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations by Yao XQ (2010)
  32. R Nakashima, K Sakurai, S Yamasaki, K Nishino, A Yamaguchi, Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 480, 565–569 (2011). (10.1038/nature10641) / Nature / Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket by Nakashima R (2011)
  33. M Menozzi, L Valentini, E Vannini, F Arcamone, Self-association of doxorubicin and related compounds in aqueous solution. J Pharm Sci 73, 766–770 (1984). (10.1002/jps.2600730615) / J Pharm Sci / Self-association of doxorubicin and related compounds in aqueous solution by Menozzi M (1984)
  34. B Miroux, JE Walker, Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260, 289–298 (1996). (10.1006/jmbi.1996.0399) / J Mol Biol / Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels by Miroux B (1996)
  35. KM Pos, K Diederichs, Purification, crystallization and preliminary diffraction studies of AcrB, an inner-membrane multi-drug efflux protein. Acta Crystallogr Biol Crystallogr D58, 1865–1867 (2002). (10.1107/S0907444902013963) / Acta Crystallogr Biol Crystallogr / Purification, crystallization and preliminary diffraction studies of AcrB, an inner-membrane multi-drug efflux protein by Pos KM (2002)
  36. J Sambrook, EF Fritsch, T Maniatis Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab Press, Cold Spring Harbor, NY, 1989). / Molecular Cloning: A Laboratory Manual by Sambrook J (1989)
  37. J Adler, O Lewinson, E Bibi, Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA. Biochemistry 43, 518–525 (2004). (10.1021/bi035485t) / Biochemistry / Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA by Adler J (2004)
  38. W Kabsch, Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66, 133–144 (2010). (10.1107/S0907444909047374) / Acta Crystallogr D Biol Crystallogr / Integration, scaling, space-group assignment and post-refinement by Kabsch W (2010)
  39. AA Vagin, A Teplyakov, MOLREP: An automated program for molecular replacement. J Appl Cryst 30, 1022–1025 (1997). (10.1107/S0021889897006766) / J Appl Cryst / MOLREP: An automated program for molecular replacement by Vagin AA (1997)
  40. LC Storoni, AJ McCoy, RJ Read, Likelihood-enhanced fast rotation functions. Acta Crystallogr D Biol Crystallogr 60, 432–438 (2004). (10.1107/S0907444903028956) / Acta Crystallogr D Biol Crystallogr / Likelihood-enhanced fast rotation functions by Storoni LC (2004)
  41. PD Adams, et al., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221 (2010). (10.1107/S0907444909052925) / Acta Crystallogr D Biol Crystallogr / PHENIX: A comprehensive Python-based system for macromolecular structure solution by Adams PD (2010)
  42. P Emsley, K Cowtan, Coot: Model-building tools for molecular graphics. Acta Crystallogr Bio Crystallogr 60, 2126–2132 (2004). (10.1107/S0907444904019158) / Acta Crystallogr Bio Crystallogr / Coot: Model-building tools for molecular graphics by Emsley P (2004)
  43. E Krissinel, K Henrick, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60, 2256–2268 (2004). (10.1107/S0907444904026460) / Acta Crystallogr D Biol Crystallogr / Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions by Krissinel E (2004)
Dates
Type When
Created 13 years, 5 months ago (March 27, 2012, 12:28 a.m.)
Deposited 3 years, 2 months ago (June 7, 2022, 4:24 a.m.)
Indexed 1 month, 3 weeks ago (July 8, 2025, 3:09 p.m.)
Issued 13 years, 5 months ago (March 26, 2012)
Published 13 years, 5 months ago (March 26, 2012)
Published Online 13 years, 5 months ago (March 26, 2012)
Published Print 13 years, 4 months ago (April 10, 2012)
Funders 0

None

@article{Eicher_2012, title={Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop}, volume={109}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1114944109}, DOI={10.1073/pnas.1114944109}, number={15}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Eicher, Thomas and Cha, Hi-jea and Seeger, Markus A. and Brandstätter, Lorenz and El-Delik, Jasmin and Bohnert, Jürgen A. and Kern, Winfried V. and Verrey, François and Grütter, Markus G. and Diederichs, Kay and Pos, Klaas M.}, year={2012}, month=mar, pages={5687–5692} }