Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

We study the effect of freezing the positions of a fraction c of particles from an equilibrium configuration of a supercooled liquid at a temperature T . We show that within the random first-order transition theory pinning particles leads to an ideal glass transition for a critical fraction c  =  c K ( T ) even for moderate supercooling; e.g., close to the Mode-Coupling transition temperature. First we derive the phase diagram in the T  -  c plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for | c  -  c K ( T )| → 0, in particular the divergence of length and time scales, which are dominated by two zero-temperature fixed points. We also show that for c  =  c K ( T ) the typical distance between frozen particles is related to the static point-to-set length scale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition.

Bibliography

Cammarota, C., & Biroli, G. (2012). Ideal glass transitions by random pinning. Proceedings of the National Academy of Sciences, 109(23), 8850–8855.

Authors 2
  1. Chiara Cammarota (first)
  2. Giulio Biroli (additional)
References 48 Referenced 173
  1. 10.1103/RevModPhys.83.587
  2. 10.1146/annurev.physchem.040808.090405
  3. G Tarjus D Kivelson S Kivelson Frustration-limited domain theory of supercooled liquids and the glass transition in supercooled liquids: advances and novel applications. eds J Fourkas et al. (Washington) 67 (1997). (10.1021/bk-1997-0676.ch005)
  4. L Berthier G Biroli J-P Bouchaud L Cipelletti W Van Saarloos Dynamical heterogeneities in glasses colloids and granular materials. (Oxford University Press Oxford 2011). (10.1093/acprof:oso/9780199691470.001.0001)
  5. 10.1103/PhysRevA.40.1045
  6. 10.1080/13642810208221307
  7. G Biroli, J-P Bouchaud, The random first-order transition theory of glasses: a critical assessment. Structural Glasses and Supercooled Liquids: Theory, Experiments, and Applications, eds PG Wolynes, V Lubchenko (Wiley, NY, 2012). / Structural Glasses and Supercooled Liquids: Theory, Experiments, and Applications by Biroli G (2012)
  8. 10.1063/1.1796231
  9. 10.1038/nphys1050
  10. 10.1103/PhysRevLett.104.065701
  11. 10.1007/s10955-006-9175-y
  12. L Berthier W Kob Static point-to-set correlations in glass-forming liquids. Phys Rev E 85 011102-1–011102-5 (2012). (10.1103/PhysRevE.85.011102)
  13. 10.1209/epl/i2003-00303-0
  14. 10.1088/0953-8984/23/23/234123
  15. S Karmakar I Procaccia Exposing the static scale of the glass transition by random pinning. arXiv:1105.4053. (2011).
  16. M Mézard, G Parisi, Glasses and replicas. Structural Glasses and Supercooled Liquids: Theory, Experiments, and Applications, eds PG Wolynes, V Lubchenko (Wiley, NY, 2012). / Structural Glasses and Supercooled Liquids: Theory, Experiments, and Applications by Mézard M (2012)
  17. 10.1063/1.3257739
  18. 10.1063/1.1696442
  19. 10.1103/PhysRevB.72.100201
  20. 10.1103/PhysRevB.80.024204
  21. 10.1209/epl/i2005-10420-8
  22. 10.1088/1742-5468/2005/04/P04001
  23. S Franz, G Semerjian, Analytical approaches to time- and length-scales in models of glasses. Dynamical heterogeneities in glasses, colloids and granular materials (Oxford University Press, Oxford, 2011). / Dynamical heterogeneities in glasses, colloids and granular materials by Franz S (2011)
  24. C Cammarota G Biroli Aging and relaxation near random pinning glass transitions. Euro Phys Lett 98 16011-1–16011-6 (2012). (10.1209/0295-5075/98/16011)
  25. 10.1103/PhysRevE.75.031503
  26. 10.1103/PhysRevE.82.061501
  27. 10.1103/PhysRevLett.45.79
  28. 10.1088/1751-8113/41/32/324011
  29. T Castellani, A Cavagna, Spin-glass theory for pedestrians. J Stat Mech P05012 (2005). / J Stat Mech / Spin-glass theory for pedestrians by Castellani T (2005)
  30. 10.1016/j.physrep.2009.03.003
  31. 10.1088/1751-8113/40/11/F01
  32. F Ricci-Tersenghi, G Semerjian, On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms. J Stat Mech P09001, 1–46 (2009). / J Stat Mech / On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms by Ricci-Tersenghi F (2009)
  33. 10.1103/PhysRevLett.106.115705
  34. S Franz G Parisi Glassy critical points and random field Ising model. arXiv:1203.4849. (2012). (10.1088/1742-5468/2013/02/L02001)
  35. S Franz G Parisi F Ricci-Tersenghi T Rizzo Replica field theory of the dynamical transition in glassy systems. arXiv:1105.5230. (2011).
  36. 10.1103/PhysRevB.65.134411
  37. 10.1063/1.3009827
  38. 10.1103/PhysRevLett.62.2503
  39. 10.1209/epl/i2000-00234-2
  40. 10.1073/pnas.0811082106
  41. 10.1103/PhysRevLett.105.055703
  42. 10.1103/PhysRevB.51.6411
  43. R Jack L Berthier Random pinning in glassy spin models with plaquette interactions. Phys Rev E 85 021120-1–021120-13 (2012). (10.1103/PhysRevE.85.021120)
  44. 10.1103/PhysRevLett.79.2486
  45. 10.1016/S0378-4371(98)00315-X
  46. 10.1126/science.1166665
  47. E Pitard V Lecomte Frédéric Van Wijland Dynamic transition in an atomic glass former: a molecular dynamics evidence. Europhys Lett 96 56002-1–56002-5 (2011). (10.1209/0295-5075/96/56002)
  48. 10.1103/PhysRevE.81.011111
Dates
Type When
Created 13 years, 3 months ago (May 24, 2012, 12:21 a.m.)
Deposited 3 years, 4 months ago (April 15, 2022, 12:58 a.m.)
Indexed 1 day, 9 hours ago (Aug. 30, 2025, 12:43 p.m.)
Issued 13 years, 3 months ago (May 23, 2012)
Published 13 years, 3 months ago (May 23, 2012)
Published Online 13 years, 3 months ago (May 23, 2012)
Published Print 13 years, 2 months ago (June 5, 2012)
Funders 0

None

@article{Cammarota_2012, title={Ideal glass transitions by random pinning}, volume={109}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1111582109}, DOI={10.1073/pnas.1111582109}, number={23}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Cammarota, Chiara and Biroli, Giulio}, year={2012}, month=may, pages={8850–8855} }