Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

The basis for the anomalies of water is still mysterious. Quite generally tetrahedrally coordinated systems, also silicon, show similar thermodynamic behavior but lack—like water—a thorough explanation. Proposed models—controversially discussed—explain the anomalies as a remainder of a first-order phase transition between high and low density liquid phases, buried deeply in the “no man’s land”—a part of the supercooled liquid region where rapid crystallization prohibits any experimental access. Other explanations doubt the existence of the phase transition and its first-order nature. Here, we provide experimental evidence for the first-order-phase transition in silicon. With ultrashort optical pulses of femtosecond duration we instantaneously heat the electronic system of silicon while the atomic structure as defined by the much heavier nuclear system remains initially unchanged. Only on a picosecond time scale the energy is transferred into the atomic lattice providing the energy to drive the phase transitions. With femtosecond X-ray pulses from FLASH, the free-electron laser at Hamburg, we follow the evolution of the valence electronic structure during this process. As the relevant phases are easily distinguishable in their electronic structure, we track how silicon melts into the low-density-liquid phase while a second phase transition into the high-density-liquid phase only occurs after the latent heat for the first-order phase transition has been transferred to the atomic structure. Proving the existence of the liquid-liquid phase transition in silicon, the hypothesized liquid-liquid scenario for water is strongly supported.

Bibliography

Beye, M., Sorgenfrei, F., Schlotter, W. F., Wurth, W., & Föhlisch, A. (2010). The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons. Proceedings of the National Academy of Sciences, 107(39), 16772–16776.

Authors 5
  1. Martin Beye (first)
  2. Florian Sorgenfrei (additional)
  3. William F. Schlotter (additional)
  4. Wilfried Wurth (additional)
  5. Alexander Föhlisch (additional)
References 63 Referenced 163
  1. 10.1073/pnas.0908198106
  2. 10.1038/360324a0
  3. 10.1103/PhysRevE.47.2669
  4. 10.1088/0953-8984/15/45/R01
  5. 10.1038/452291a
  6. 10.1063/1.481505
  7. 10.1016/S0167-7322(02)00094-6
  8. 10.1126/science.1136371
  9. 10.1088/0953-8984/14/8/106
  10. 10.1126/science.1096205
  11. 10.1126/science.1102560
  12. 10.1073/pnas.0607138104
  13. 10.1016/j.cplett.2008.04.077
  14. 10.1073/pnas.0904743106
  15. 10.1038/24540
  16. 10.1103/PhysRevLett.96.215502
  17. 10.1126/science.1131939
  18. 10.1073/pnas.0702608104
  19. 10.1002/cphc.200800639
  20. 10.1073/pnas.0912158107
  21. 10.1073/pnas.0913504107
  22. 10.1063/1.2968550
  23. 10.1021/jp9007619
  24. 10.1039/b000206m
  25. 10.1073/pnas.0507870102
  26. 10.1140/epjst/e2008-00746-3
  27. 10.1021/jp805227c
  28. L Aptekar, Phase-transition in noncrystalline germanium and silicon. Dokl Akad Nauk Sssr+ 249, 1099–1103 (1979). / Dokl Akad Nauk Sssr+ / Phase-transition in noncrystalline germanium and silicon by Aptekar L (1979)
  29. 10.1038/nmat994
  30. 10.1063/1.1755653
  31. 10.1088/0953-8984/19/41/415101
  32. 10.1038/nmat1458
  33. 10.1103/PhysRevLett.92.175701
  34. 10.1103/PhysRevLett.99.205702
  35. 10.1103/PhysRevLett.102.075701
  36. 10.1038/35107036
  37. 10.1038/nmat1241
  38. 10.1038/nmat1248
  39. 10.1088/0953-8984/10/3/005
  40. 10.1134/1.1448612
  41. 10.1103/PhysRevLett.100.135502
  42. 10.1103/PhysRevB.49.7299
  43. 10.1103/PhysRevB.51.14186
  44. 10.1103/PhysRevLett.81.224
  45. 10.1016/S0169-4332(99)00440-7
  46. 10.1038/35065045
  47. 10.1103/PhysRevB.66.165217
  48. 10.1038/nmat767
  49. 10.1103/PhysRevLett.90.236102
  50. 10.1103/PhysRevLett.91.157403
  51. 10.1103/PhysRevB.73.134108
  52. 10.1103/PhysRevLett.100.155504
  53. 10.1038/nphoton.2009.160
  54. 10.1103/PhysRevLett.103.237401
  55. 10.1016/S0368-2048(00)00153-5
  56. 10.1063/1.3273204
  57. 10.1063/1.2364148
  58. 10.1088/1464-4258/9/7/030
  59. 10.1038/nphoton.2007.76
  60. 10.1016/j.nima.2008.12.202
  61. 10.1088/1367-2630/11/2/023029
  62. J Geist Handbook of optical constants of solids, ed E Palik (Academic Press, edition 4, Boston) Vol. 4, 519 (1998). / Handbook of optical constants of solids by Geist J (1998)
  63. 10.1063/1.3111789
Dates
Type When
Created 15 years ago (Aug. 30, 2010, 10:49 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 6:47 p.m.)
Indexed 1 week, 1 day ago (Aug. 23, 2025, 9:42 p.m.)
Issued 15 years ago (Aug. 30, 2010)
Published 15 years ago (Aug. 30, 2010)
Published Online 15 years ago (Aug. 30, 2010)
Published Print 14 years, 11 months ago (Sept. 28, 2010)
Funders 0

None

@article{Beye_2010, title={The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons}, volume={107}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.1006499107}, DOI={10.1073/pnas.1006499107}, number={39}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Beye, Martin and Sorgenfrei, Florian and Schlotter, William F. and Wurth, Wilfried and Föhlisch, Alexander}, year={2010}, month=aug, pages={16772–16776} }