Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

We present a topological framework that provides a simple yet powerful electronic circuit architecture for constructing and using multilayer crossbar arrays, allowing a significantly increased integration density of memristive crosspoint devices beyond the scaling limits of lateral feature sizes. The truly remarkable feature of such circuits, which is an extension of the CMOL (Cmos + MOLecular-scale devices) concept for an area-like interface to a three-dimensional system, is that a large-feature-size complimentary metal-oxide-semiconductor (CMOS) substrate can provide high-density interconnects to multiple crossbar layers through a single set of vertical vias. The physical locations of the memristive devices are mapped to a four-dimensional logical address space such that unique access from the CMOS substrate is provided to every device in a stacked array of crossbars. This hybrid architecture is compatible with digital memories, field-programmable gate arrays, and biologically inspired adaptive networks and with state-of-the-art integrated circuit foundries.

Bibliography

Strukov, D. B., & Williams, R. S. (2009). Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proceedings of the National Academy of Sciences, 106(48), 20155–20158.

Authors 2
  1. Dmitri B. Strukov (first)
  2. R. Stanley Williams (additional)
References 27 Referenced 127
  1. 10.1109/5.915374
  2. 2007).
  3. 10.1109/MDT.2005.125
  4. 10.1147/JRD.2008.5388567
  5. 10.1016/j.microrel.2008.03.010
  6. 10.1109/TCT.1971.1083337
  7. 10.1109/PROC.1976.10092
  8. 10.1038/nature06932
  9. 10.1088/0034-4885/33/3/306
  10. 10.1038/nmat2023
  11. KK Likharev, DB Strukov, CMOL: Devices, circuits, and architectures. Introducing Molecular Electronics, eds G Cuniberti, G Fagas, K Richter (Springer, Berlin), pp. 447–478 (2005). / Introducing Molecular Electronics by Likharev KK (2005)
  12. 10.1166/jnn.2007.18012
  13. 10.1088/0957-4484/14/4/311
  14. 10.1109/TNANO.2004.837849
  15. 10.1038/nature05462
  16. 10.1021/nl8037689
  17. 10.1016/j.mee.2008.01.101
  18. M-J Lee et al. Stack friendly all-oxide 3D RRAM using GaInZnO peripheral TFT realized over glass substrates. pp. 85–88 (2008). (10.1109/IEDM.2008.4796620)
  19. 10.1088/0957-4484/16/6/045
  20. 10.1196/annals.1292.010
  21. B Gojman R Rubin C Pilotto A DeHon T Tanamoto 3D nanowire-based programmable logic. (IEEE Lausanne Switzerland) pp. 1–6 (2006). (10.1109/NANONET.2006.346223)
  22. 10.1049/mnl:20070034
  23. LC Lloyd, M Matt, SEMATECH's nanoImprint program: A key enabler for nanoimprint introduction. Proc SPIE Int Soc Opt Eng 7271, 72711Q (2009). / Proc SPIE Int Soc Opt Eng / SEMATECH's nanoImprint program: A key enabler for nanoimprint introduction by Lloyd LC (2009)
  24. 10.1088/0957-4484/18/3/035204
  25. 10.1021/nl901874j
  26. C Mead Analog VLSI and Neural Systems (Addison–Wesley, Reading, MA, 1989). / Analog VLSI and Neural Systems by Mead C (1989)
  27. 10.1088/0957-4484/18/36/365202
Dates
Type When
Created 15 years, 9 months ago (Nov. 16, 2009, 10:24 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 7:04 p.m.)
Indexed 1 week ago (Aug. 21, 2025, 1:58 p.m.)
Issued 15 years, 8 months ago (Dec. 1, 2009)
Published 15 years, 8 months ago (Dec. 1, 2009)
Published Online 15 years, 8 months ago (Dec. 1, 2009)
Published Print 15 years, 8 months ago (Dec. 1, 2009)
Funders 0

None

@article{Strukov_2009, title={Four-dimensional address topology for circuits with stacked multilayer crossbar arrays}, volume={106}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0906949106}, DOI={10.1073/pnas.0906949106}, number={48}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Strukov, Dmitri B. and Williams, R. Stanley}, year={2009}, month=dec, pages={20155–20158} }