Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

The mode coupling theory (MCT) of glasses, while offering an incomplete description of glass transition physics, represents the only established route to first-principles prediction of rheological behavior in nonergodic materials such as colloidal glasses. However, the constitutive equations derivable from MCT are somewhat intractable, hindering their practical use and also their interpretation. Here, we present a schematic (single-mode) MCT model which incorporates the tensorial structure of the full theory. Using it, we calculate the dynamic yield surface for a large class of flows.

Bibliography

Brader, J. M., Voigtmann, T., Fuchs, M., Larson, R. G., & Cates, M. E. (2009). Glass rheology: From mode-coupling theory to a dynamical yield criterion. Proceedings of the National Academy of Sciences, 106(36), 15186–15191.

Authors 5
  1. Joseph M. Brader (first)
  2. Thomas Voigtmann (additional)
  3. Matthias Fuchs (additional)
  4. Ronald G. Larson (additional)
  5. Michael E. Cates (additional)
References 27 Referenced 122
  1. C Truesdell, W Noll The Nonlinear Field Theories of Mechanics (Springer, Berlin, 1965). / The Nonlinear Field Theories of Mechanics by Truesdell C (1965)
  2. M Doi, SF Edwards The Theory of Polymer Dynamics (Oxford Univ Press, Oxford, 1989). / The Theory of Polymer Dynamics by Doi M (1989)
  3. RG Larson Constitutive Equations for Polymer Melts and Solutions (Butterworth, Boston, 1988). / Constitutive Equations for Polymer Melts and Solutions by Larson RG (1988)
  4. 10.1080/00018730210153216
  5. 10.1080/00018730601082029
  6. 10.1122/1.551088
  7. 10.1103/PhysRevLett.99.028301
  8. 10.1103/PhysRevLett.98.198305
  9. 10.1103/PhysRevLett.96.135701
  10. 10.1103/PhysRevE.78.041501
  11. 10.1209/epl/i2004-10044-6
  12. 10.1122/1.1814114
  13. 10.1103/PhysRevLett.89.248304
  14. 10.1103/PhysRevLett.98.058301
  15. 10.1103/PhysRevLett.101.138301
  16. 10.1088/0034-4885/55/3/001
  17. 10.1039/b205629a
  18. 10.1088/0953-8984/17/20/003
  19. 10.1122/1.3119084
  20. 10.1098/rsta.2009.0191
  21. 10.1063/1.2921801
  22. 10.1122/1.3093088
  23. 10.1140/epje/i2008-10361-0
  24. 10.1088/0953-8984/20/40/404210
  25. 10.1088/0953-8984/16/38/013
  26. 10.1209/epl/i2006-10156-y
  27. R Hill The Mathematical Theory of Plasticity (Oxford Univ Press, Oxford, 1971). / The Mathematical Theory of Plasticity by Hill R (1971)
Dates
Type When
Created 16 years ago (Aug. 14, 2009, 9:47 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 6:05 p.m.)
Indexed 3 weeks, 4 days ago (Aug. 6, 2025, 8:19 a.m.)
Issued 15 years, 11 months ago (Sept. 8, 2009)
Published 15 years, 11 months ago (Sept. 8, 2009)
Published Online 15 years, 11 months ago (Sept. 8, 2009)
Published Print 15 years, 11 months ago (Sept. 8, 2009)
Funders 0

None

@article{Brader_2009, title={Glass rheology: From mode-coupling theory to a dynamical yield criterion}, volume={106}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0905330106}, DOI={10.1073/pnas.0905330106}, number={36}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Brader, Joseph M. and Voigtmann, Thomas and Fuchs, Matthias and Larson, Ronald G. and Cates, Michael E.}, year={2009}, month=sep, pages={15186–15191} }