Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

The computational cost of exact methods for quantum simulation using classical computers grows exponentially with system size. As a consequence, these techniques can be applied only to small systems. By contrast, we demonstrate that quantum computers could exactly simulate chemical reactions in polynomial time. Our algorithm uses the split-operator approach and explicitly simulates all electron-nuclear and interelectronic interactions in quadratic time. Surprisingly, this treatment is not only more accurate than the Born–Oppenheimer approximation but faster and more efficient as well, for all reactions with more than about four atoms. This is the case even though the entire electronic wave function is propagated on a grid with appropriately short time steps. Although the preparation and measurement of arbitrary states on a quantum computer is inefficient, here we demonstrate how to prepare states of chemical interest efficiently. We also show how to efficiently obtain chemically relevant observables, such as state-to-state transition probabilities and thermal reaction rates. Quantum computers using these techniques could outperform current classical computers with 100 qubits.

Bibliography

Kassal, I., Jordan, S. P., Love, P. J., Mohseni, M., & Aspuru-Guzik, A. (2008). Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences, 105(48), 18681–18686.

Authors 5
  1. Ivan Kassal (first)
  2. Stephen P. Jordan (additional)
  3. Peter J. Love (additional)
  4. Masoud Mohseni (additional)
  5. Alán Aspuru-Guzik (additional)
References 42 Referenced 273
  1. 10.1063/1.463007
  2. 10.1063/1.1560636
  3. 10.1063/1.476142
  4. 10.1126/science.1104085
  5. 10.1063/1.1323746
  6. 10.1016/j.jphotochem.2007.05.015
  7. 10.1021/jp994174i
  8. 10.1146/annurev.physchem.57.032905.104612
  9. 10.1088/0953-4075/34/3/103
  10. 10.1103/PhysRevLett.94.063002
  11. 10.1126/science.286.5449.2474
  12. 10.1126/science.1120263
  13. 10.1007/BF02650179
  14. 10.1126/science.273.5278.1073
  15. 10.1098/rspa.1998.0162
  16. S Wiesner Simulations of many-body quantum systems by a quantum computer. arXiv:quant-ph/9603028. (1996).
  17. 10.1103/PhysRevE.59.2429
  18. 10.1126/science.1113479
  19. AM Steane, How to build a 300 bit, 1 giga-operation quantum computer. Quant Inf Comput 7, 171–183 (2007). / Quant Inf Comput / How to build a 300 bit, 1 giga-operation quantum computer by Steane AM (2007)
  20. 10.1016/0021-9991(82)90091-2
  21. 10.1016/0021-9991(83)90015-3
  22. D Coppersmith An approximate Fourier transform useful in quantum factoring. arXiv:quant-ph/0201067. (2002).
  23. E Bernstein U Vazirani Quantum complexity theory. (Assoc for Comput Machinery New York) pp. 11–20 (1993). (10.1145/167088.167097)
  24. 10.1007/s00220-006-0150-x
  25. DE Knuth Art of Computer Programming, Vol 2: Seminumerical Algorithms (Addison–Wesley, 3rd Ed., Boston, 1997). / Art of Computer Programming, Vol 2: Seminumerical Algorithms by Knuth DE (1997)
  26. MA Nielsen, IL Chuang Quantum Computation and Quantum Information (Cambridge Univ Press, 1st Ed., Cambridge, UK, 2000). / Quantum Computation and Quantum Information by Nielsen MA (2000)
  27. 10.1103/PhysRevE.73.036708
  28. 10.1063/1.471430
  29. D Aharonov A Ta-Shma Adiabatic quantum state generation and statistical zero knowledge. (Assoc for Comput Machinery New York) pp. 20–29 (2003). (10.1145/780542.780546)
  30. L Grover T Rudolph Creating superpositions that correspond to efficiently integrable probability distributions. arXiv:quant-ph/0208112. (2002).
  31. 10.1103/PhysRevLett.79.2586
  32. 10.1103/PhysRevLett.83.5162
  33. 10.1103/PhysRevLett.97.170501
  34. 10.1126/science.1145699
  35. 10.1103/PhysRevLett.96.010401
  36. G Brassard P Hoyer M Mosca A Tapp Quantum amplitude amplification and estimation. arXiv:quant-ph/0005055. (2000).
  37. 10.1103/PhysRevA.75.012328
  38. DJ Tannor Introduction to Quantum Mechanics: A Time-Dependent Perspective (Univ Sci Books, Mill Valley, CA, 2007). / Introduction to Quantum Mechanics: A Time-Dependent Perspective by Tannor DJ (2007)
  39. 10.1063/1.460139
  40. 10.1103/RevModPhys.67.279
  41. 10.1063/1.2358137
  42. 10.1209/0295-5075/80/67008
Dates
Type When
Created 16 years, 9 months ago (Nov. 24, 2008, 9:56 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 5:40 p.m.)
Indexed 4 days, 23 hours ago (Aug. 28, 2025, 8:10 a.m.)
Issued 16 years, 9 months ago (Dec. 2, 2008)
Published 16 years, 9 months ago (Dec. 2, 2008)
Published Online 16 years, 9 months ago (Dec. 2, 2008)
Published Print 16 years, 9 months ago (Dec. 2, 2008)
Funders 0

None

@article{Kassal_2008, title={Polynomial-time quantum algorithm for the simulation of chemical dynamics}, volume={105}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0808245105}, DOI={10.1073/pnas.0808245105}, number={48}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Kassal, Ivan and Jordan, Stephen P. and Love, Peter J. and Mohseni, Masoud and Aspuru-Guzik, Alán}, year={2008}, month=dec, pages={18681–18686} }