Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived.

Bibliography

Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences, 105(10), 3968–3973.

Authors 6
  1. Enrico Marsili (first)
  2. Daniel B. Baron (additional)
  3. Indraneel D. Shikhare (additional)
  4. Dan Coursolle (additional)
  5. Jeffrey A. Gralnick (additional)
  6. Daniel R. Bond (additional)
References 45 Referenced 1,716
  1. 10.1146/annurev.bi.65.070196.002541
  2. 10.1590/S0103-50532003000200008
  3. 10.1016/S0003-2670(99)00610-8
  4. 10.1128/AEM.71.8.4414-4426.2005
  5. 10.1080/01490450252864253
  6. 10.1038/35011098
  7. 10.1128/AEM.70.9.5415-5425.2004
  8. 10.1016/j.jinorgbio.2007.07.020
  9. 10.1073/pnas.0604517103
  10. A Albert, The metal-binding properties of riboflavin. Biochem J 47, xxvii (1950). / Biochem J / The metal-binding properties of riboflavin. by Albert A (1950)
  11. 10.1042/bj0540646
  12. 10.1128/JB.180.6.1473-1479.1998
  13. 10.1128/AEM.69.3.1548-1555.2003
  14. 10.1126/science.1066771
  15. 10.1002/bit.21671
  16. 10.1373/clinchem.2005.051169
  17. DH Park, BH Kim, Growth properties of the iron-reducing bacteria, Shewanella putrefaciens IR-1 and MR-1 coupling to reduction of Fe(III) to Fe(II). J Microbiol 39, 273–278 (2001). / J Microbiol / Growth properties of the iron-reducing bacteria, Shewanella putrefaciens IR-1 and MR-1 coupling to reduction of Fe(III) to Fe(II). by Park DH (2001)
  18. 10.1128/AEM.68.12.6256-6262.2002
  19. 10.1146/annurev.nutr.20.1.153
  20. 10.1128/AEM.68.4.1760-1771.2002
  21. 10.1074/jbc.275.12.8515
  22. 10.1007/s00775-007-0278-y
  23. 10.1128/AEM.72.2.1558-1568.2006
  24. 10.1016/j.bbabio.2006.04.002
  25. 10.1021/bi034789c
  26. 10.1021/ja980197j
  27. 10.1021/jp981023r
  28. 10.1023/A:1010316708080
  29. 10.1021/ja00078a030
  30. 10.1021/ic0483747
  31. AJ Bard, LR Faulkner Electrochemical Methods (Wiley, Hoboken, NJ, 2001). / Electrochemical Methods by Bard AJ (2001)
  32. 10.1590/S0103-50532002000500015
  33. 10.1128/AEM.01444-06
  34. 10.1021/ja9608611
  35. 10.1007/s00253-002-0972-1
  36. 10.1149/1.2189257
  37. 10.1128/AEM.70.9.5373-5382.2004
  38. 10.1007/BF02148213
  39. 10.1016/S0141-0229(01)00478-1
  40. 10.1346/CCMN.1984.0320405
  41. 10.1346/CCMN.1983.0310604
  42. 10.1007/s00425-006-0476-9
  43. 10.1002/jobm.200610279
  44. 10.1111/j.1365-2621.1982.tb10120.x
  45. 10.1128/AEM.01387-07
Dates
Type When
Created 17 years, 5 months ago (March 3, 2008, 8:54 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 5:01 p.m.)
Indexed 13 hours, 29 minutes ago (Aug. 31, 2025, 6:04 a.m.)
Issued 17 years, 5 months ago (March 11, 2008)
Published 17 years, 5 months ago (March 11, 2008)
Published Online 17 years, 5 months ago (March 11, 2008)
Published Print 17 years, 5 months ago (March 11, 2008)
Funders 0

None

@article{Marsili_2008, title={Shewanella secretes flavins that mediate extracellular electron transfer}, volume={105}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0710525105}, DOI={10.1073/pnas.0710525105}, number={10}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Marsili, Enrico and Baron, Daniel B. and Shikhare, Indraneel D. and Coursolle, Dan and Gralnick, Jeffrey A. and Bond, Daniel R.}, year={2008}, month=mar, pages={3968–3973} }