Abstract
An instance of a random constraint satisfaction problem defines a random subset 𝒮 (the set of solutions) of a large product spaceXN(the set of assignments). We consider two prototypical problem ensembles (randomk-satisfiability andq-coloring of random regular graphs) and study the uniform measure with support onS. As the number of constraints per variable increases, this measure first decomposes into an exponential number of pure states (“clusters”) and subsequently condensates over the largest such states. Above the condensation point, the mass carried by thenlargest states follows a Poisson-Dirichlet process. For typical large instances, the two transitions are sharp. We determine their precise location. Further, we provide a formal definition of each phase transition in terms of different notions of correlation between distinct variables in the problem. The degree of correlation naturally affects the performances of many search/sampling algorithms. Empirical evidence suggests that local Monte Carlo Markov chain strategies are effective up to the clustering phase transition and belief propagation up to the condensation point. Finally, refined message passing techniques (such as survey propagation) may also beat this threshold.
References
33
Referenced
341
- MR Garey, DS Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979). / Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey MR (1979)
10.1109/18.910572
10.1016/0166-218X(83)90017-3
- B Selman HA Kautz B Cohen (AAAI Press Seattle WA) pp. 337–343 (1994).
- D Achlioptas GB Sorkin (IEEE Press Los Alamitos CA) pp. 590–600 (2000).
10.1126/science.1073287
-
M Bayati D Shah M Sharma (IEEE Press Los Alamitos CA) pp. 557–561 (2006).
(
10.1109/ISIT.2006.261778
) -
D Gamarnik A Bandyopadhyay (ACM Press New York) pp. 890–899 (2006).
(
10.1145/1109557.1109655
) - A Montanari D Shah (ACM Press New York) pp. 1255–1264 (2007).
10.1090/S0894-0347-99-00305-7
10.1002/rsa.20090
10.1038/nature03602
10.1103/PhysRevLett.89.268701
10.1103/PhysRevE.70.046705
10.1007/BF01375472
10.1007/s10955-006-9162-3
10.1515/9783110850147
10.1016/S0167-7152(02)00054-8
- E Aurell, U Gordon, S Kirkpatrick Advances in Neural Information Processing Systems (MIT Press, Cambridge, MA), pp. 49–56 (2004). / Advances in Neural Information Processing Systems by Aurell E (2004)
- EN Maneva E Mossel MJ Wainwright (ACM Press New York) pp. 1089–1098 (2005).
10.1007/s100510051065
10.1103/PhysRevLett.94.197205
-
D Achlioptas F Ricci-Tersenghi (ACM Press New York) pp. 130–139 (2006).
(
10.1145/1132516.1132537
) 10.1088/1742-5468/2004/06/P06007
10.1103/PhysRevLett.95.200202
10.1007/BF01210613
10.1016/S0764-4442(00)01743-2
10.1214/aoms/1177699139
10.1016/0022-247X(67)90155-2
10.1103/PhysRevB.70.134406
10.1109/TIT.2005.850085
10.1007/PL00011099
10.1214/aoap/1060202828
Dates
Type | When |
---|---|
Created | 18 years, 2 months ago (June 14, 2007, 12:03 a.m.) |
Deposited | 7 months ago (Jan. 17, 2025, 1:47 a.m.) |
Indexed | 2 weeks, 3 days ago (Aug. 6, 2025, 8:48 a.m.) |
Issued | 18 years, 2 months ago (June 19, 2007) |
Published | 18 years, 2 months ago (June 19, 2007) |
Published Online | 18 years, 2 months ago (June 19, 2007) |
Published Print | 18 years, 2 months ago (June 19, 2007) |
@article{Krz_aka_a_2007, title={Gibbs states and the set of solutions of random constraint satisfaction problems}, volume={104}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0703685104}, DOI={10.1073/pnas.0703685104}, number={25}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Krz̧akała, Florent and Montanari, Andrea and Ricci-Tersenghi, Federico and Semerjian, Guilhem and Zdeborová, Lenka}, year={2007}, month=jun, pages={10318–10323} }