Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

An instance of a random constraint satisfaction problem defines a random subset 𝒮 (the set of solutions) of a large product spaceXN(the set of assignments). We consider two prototypical problem ensembles (randomk-satisfiability andq-coloring of random regular graphs) and study the uniform measure with support onS. As the number of constraints per variable increases, this measure first decomposes into an exponential number of pure states (“clusters”) and subsequently condensates over the largest such states. Above the condensation point, the mass carried by thenlargest states follows a Poisson-Dirichlet process. For typical large instances, the two transitions are sharp. We determine their precise location. Further, we provide a formal definition of each phase transition in terms of different notions of correlation between distinct variables in the problem. The degree of correlation naturally affects the performances of many search/sampling algorithms. Empirical evidence suggests that local Monte Carlo Markov chain strategies are effective up to the clustering phase transition and belief propagation up to the condensation point. Finally, refined message passing techniques (such as survey propagation) may also beat this threshold.

Bibliography

Krz̧akała, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., & Zdeborová, L. (2007). Gibbs states and the set of solutions of random constraint satisfaction problems. Proceedings of the National Academy of Sciences, 104(25), 10318–10323.

Authors 5
  1. Florent Krz̧akała (first)
  2. Andrea Montanari (additional)
  3. Federico Ricci-Tersenghi (additional)
  4. Guilhem Semerjian (additional)
  5. Lenka Zdeborová (additional)
References 33 Referenced 341
  1. MR Garey, DS Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979). / Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey MR (1979)
  2. 10.1109/18.910572
  3. 10.1016/0166-218X(83)90017-3
  4. B Selman HA Kautz B Cohen (AAAI Press Seattle WA) pp. 337–343 (1994).
  5. D Achlioptas GB Sorkin (IEEE Press Los Alamitos CA) pp. 590–600 (2000).
  6. 10.1126/science.1073287
  7. M Bayati D Shah M Sharma (IEEE Press Los Alamitos CA) pp. 557–561 (2006). (10.1109/ISIT.2006.261778)
  8. D Gamarnik A Bandyopadhyay (ACM Press New York) pp. 890–899 (2006). (10.1145/1109557.1109655)
  9. A Montanari D Shah (ACM Press New York) pp. 1255–1264 (2007).
  10. 10.1090/S0894-0347-99-00305-7
  11. 10.1002/rsa.20090
  12. 10.1038/nature03602
  13. 10.1103/PhysRevLett.89.268701
  14. 10.1103/PhysRevE.70.046705
  15. 10.1007/BF01375472
  16. 10.1007/s10955-006-9162-3
  17. 10.1515/9783110850147
  18. 10.1016/S0167-7152(02)00054-8
  19. E Aurell, U Gordon, S Kirkpatrick Advances in Neural Information Processing Systems (MIT Press, Cambridge, MA), pp. 49–56 (2004). / Advances in Neural Information Processing Systems by Aurell E (2004)
  20. EN Maneva E Mossel MJ Wainwright (ACM Press New York) pp. 1089–1098 (2005).
  21. 10.1007/s100510051065
  22. 10.1103/PhysRevLett.94.197205
  23. D Achlioptas F Ricci-Tersenghi (ACM Press New York) pp. 130–139 (2006). (10.1145/1132516.1132537)
  24. 10.1088/1742-5468/2004/06/P06007
  25. 10.1103/PhysRevLett.95.200202
  26. 10.1007/BF01210613
  27. 10.1016/S0764-4442(00)01743-2
  28. 10.1214/aoms/1177699139
  29. 10.1016/0022-247X(67)90155-2
  30. 10.1103/PhysRevB.70.134406
  31. 10.1109/TIT.2005.850085
  32. 10.1007/PL00011099
  33. 10.1214/aoap/1060202828
Dates
Type When
Created 18 years, 2 months ago (June 14, 2007, 12:03 a.m.)
Deposited 7 months ago (Jan. 17, 2025, 1:47 a.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 8:48 a.m.)
Issued 18 years, 2 months ago (June 19, 2007)
Published 18 years, 2 months ago (June 19, 2007)
Published Online 18 years, 2 months ago (June 19, 2007)
Published Print 18 years, 2 months ago (June 19, 2007)
Funders 0

None

@article{Krz_aka_a_2007, title={Gibbs states and the set of solutions of random constraint satisfaction problems}, volume={104}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0703685104}, DOI={10.1073/pnas.0703685104}, number={25}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Krz̧akała, Florent and Montanari, Andrea and Ricci-Tersenghi, Federico and Semerjian, Guilhem and Zdeborová, Lenka}, year={2007}, month=jun, pages={10318–10323} }