Abstract
We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.
References
50
Referenced
209
10.1093/bioinformatics/18.4.546
10.1093/bioinformatics/16.8.707
10.1073/pnas.95.25.14863
10.1091/mbc.e04-04-0306
- S Liang, S Fuhrman, R Somogyi Pac Symp Biocomput, pp. 18–29 (1998). / Pac Symp Biocomput by Liang S (1998)
10.1089/106652700750050817
10.1091/mbc.11.1.369
10.1093/bioinformatics/18.2.261
10.1126/science.1094068
10.1089/106652700750050961
10.1093/bioinformatics/18.2.287
10.1093/bioinformatics/bti062
- AJ Butte, IS Kohane Pac Symp Biocomput, pp. 418–429 (2000). / Pac Symp Biocomput by Butte AJ (2000)
10.1126/science.292.5518.929
10.1073/pnas.0933416100
10.1126/science.1081900
10.1093/bioinformatics/btl363
10.1073/pnas.092576199
10.1525/9780520327474
10.1002/j.1538-7305.1948.tb01338.x
10.1103/PhysRev.106.620
10.1103/PhysRev.108.171
10.1088/0305-4470/36/3/303
10.1088/0305-4470/38/21/L01
10.1038/nature04701
10.1073/pnas.0306490101
10.1126/science.1120499
10.1103/RevModPhys.74.47
10.1016/S0959-440X(02)00335-4
10.1186/gb-2006-7-4-107
10.1186/gb-2003-4-11-233
10.1126/science.278.5338.680
10.1016/S0168-6445(03)00065-2
10.1111/j.1742-4658.2006.05201.x
- JR Rohde, ME Cardenas Curr Top Microbiol Immunol 279, 53–72 (2004). / Curr Top Microbiol Immunol by Rohde JR (2004)
10.1007/s00294-005-0055-9
10.1074/jbc.270.46.27531
10.1016/S0960-9822(07)00535-0
10.1016/j.femsyr.2004.05.001
10.1111/j.1365-2958.2005.04816.x
10.1073/pnas.051494698
10.1016/S1567-1356(03)00110-7
10.1046/j.1365-2958.1998.01118.x
10.1038/nature01578
10.1016/j.bbabio.2006.05.022
10.1002/bit.260280509
10.1074/jbc.R000034200
10.1128/MCB.23.2.629-635.2003
10.1093/emboj/cdg578
10.1038/nature05020
Dates
Type | When |
---|---|
Created | 18 years, 8 months ago (Nov. 30, 2006, 8:34 p.m.) |
Deposited | 3 years, 4 months ago (April 12, 2022, 3:07 p.m.) |
Indexed | 4 days, 14 hours ago (Aug. 20, 2025, 9:21 a.m.) |
Issued | 18 years, 8 months ago (Dec. 12, 2006) |
Published | 18 years, 8 months ago (Dec. 12, 2006) |
Published Online | 18 years, 8 months ago (Dec. 12, 2006) |
Published Print | 18 years, 8 months ago (Dec. 12, 2006) |
@article{Lezon_2006, title={Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns}, volume={103}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0609152103}, DOI={10.1073/pnas.0609152103}, number={50}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Lezon, Timothy R. and Banavar, Jayanth R. and Cieplak, Marek and Maritan, Amos and Fedoroff, Nina V.}, year={2006}, month=dec, pages={19033–19038} }