Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.

Bibliography

Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.

Authors 1
  1. M. E. J. Newman (first)
References 32 Referenced 9,211
  1. 10.1038/30918
  2. 10.1126/science.286.5439.509
  3. 10.1126/science.298.5594.824
  4. 10.1103/RevModPhys.74.47
  5. 10.1080/00018730110112519
  6. 10.1137/S003614450342480
  7. 10.1140/epjb/e2004-00124-y
  8. 10.1088/1742-5468/2005/09/P09008
  9. 10.1109/2.989932
  10. 10.1073/pnas.122653799
  11. 10.1093/bioinformatics/btg033
  12. 10.1038/nature03288
  13. U. Elsner Graph Partitioning: A Survey (Technische Universität Chemnitz, Chemnitz, Germany, Technical Report 97-27. (1997). / Graph Partitioning: A Survey by Elsner U. (1997)
  14. P.-O. Fjällström Linköping Electronic Articles in Computer and Information Science Vol. 3 Available at www.ep.liu.se/ea/cis/1998/006. Accessed May 10 2006. (1998).
  15. 10.1086/226141
  16. 10.1017/CBO9780511815478
  17. 10.1103/PhysRevE.69.026113
  18. 10.1103/PhysRevE.69.066133
  19. 10.1103/PhysRevE.72.027104
  20. F. R. K. Chung (Am. Math. Soc. Providence RI no. 92. (1997).
  21. 10.21136/CMJ.1973.101168
  22. 10.1137/0611030
  23. 10.1086/jar.33.4.3629752
  24. 10.1073/pnas.0400054101
  25. 10.1002/j.1538-7305.1970.tb01770.x
  26. 10.1103/PhysRevE.70.066111
  27. 10.1142/S0219525903001067
  28. 10.1038/35036627
  29. 10.1103/PhysRevE.68.065103
  30. X. Guardiola R. Guimerà A. Arenas A. Diaz-Guilera D. Streib L. A. N. Amaral e-Print Archive http://xxx.lanl.gov/abs/cond-mat/0206240. (2002).
  31. 10.1073/pnas.98.2.404
  32. S. White P. Smyth eds H. Kargupta J. Srivastava C. Kamath A. Goodman (Society for Industrial and Applied Mathematics Philadelphia) pp. 274–285 (2005). (10.1137/1.9781611972757.25)
Dates
Type When
Created 19 years, 3 months ago (May 24, 2006, 8:36 p.m.)
Deposited 7 months, 4 weeks ago (Jan. 8, 2025, 9:01 p.m.)
Indexed 7 minutes ago (Sept. 6, 2025, 7:36 a.m.)
Issued 19 years, 3 months ago (June 6, 2006)
Published 19 years, 3 months ago (June 6, 2006)
Published Online 19 years, 3 months ago (June 6, 2006)
Published Print 19 years, 3 months ago (June 6, 2006)
Funders 0

None

@article{Newman_2006, title={Modularity and community structure in networks}, volume={103}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0601602103}, DOI={10.1073/pnas.0601602103}, number={23}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Newman, M. E. J.}, year={2006}, month=jun, pages={8577–8582} }