Abstract
Chromatin structure plays a fundamental role in the regulation of nuclear processes such as DNA transcription, replication, recombination, and repair. Despite considerable efforts during three decades, the structure of the 30-nm chromatin fiber remains controversial. To define fiber dimensions accurately, we have produced very long and regularly folded 30-nm fibers from in vitro reconstituted nucleosome arrays containing the linker histone and with increasing nucleosome repeat lengths (10 to 70 bp of linker DNA). EM measurements show that the dimensions of these fully folded fibers do not increase linearly with increasing linker length, a finding that is inconsistent with two-start helix models. Instead, we find that there are two distinct classes of fiber structure, both with unexpectedly high nucleosome density: arrays with 10 to 40 bp of linker DNA all produce fibers with a diameter of 33 nm and 11 nucleosomes per 11 nm, whereas arrays with 50 to 70 bp of linker DNA all produce 44-nm-wide fibers with 15 nucleosomes per 11 nm. Using the physical constraints imposed by these measurements, we have built a model in which tight nucleosome packing is achieved through the interdigitation of nucleosomes from adjacent helical gyres. Importantly, the model closely matches raw image projections of folded chromatin arrays recorded in the solution state by using electron cryo-microscopy.
References
53
Referenced
413
10.1038/2171122a0
10.1146/annurev.ge.04.120170.001403
10.1038/269029a0
10.1038/311532a0
10.1038/38444
10.1016/S0022-2836(77)80019-3
10.1038/288675a0
10.1006/jmbi.1996.0144
10.1146/annurev.bi.46.070177.004435
10.1073/pnas.89.3.1095
10.1016/j.jmb.2004.10.075
10.1016/S0021-9258(18)41815-7
10.1006/bbrc.1996.5903
10.1073/pnas.73.6.1897
10.1083/jcb.83.2.403
10.1073/pnas.78.3.1461
10.1083/jcb.99.1.272
10.1083/jcb.99.1.42
10.1002/j.1460-2075.1985.tb04064.x
10.1016/S0006-3495(86)83637-2
10.1083/jcb.111.3.795
10.1083/jcb.110.2.245
10.1083/jcb.125.1.11
10.1016/0092-8674(85)90025-X
10.1073/pnas.84.22.7802
10.1038/368351a0
10.1016/S0006-3495(91)82276-7
10.1016/0092-8674(80)90157-9
10.1016/0092-8674(83)90025-9
10.1038/308247a0
10.1021/bi00359a052
10.1016/0022-2836(80)90268-5
10.1016/0022-2836(80)90215-6
10.1002/j.1460-2075.1984.tb02180.x
10.1021/bi970801n
10.1093/nar/28.16.3092
10.1038/362219a0
10.1038/nature03686
10.1021/bi973117h
10.1006/jmbi.1997.1494
10.1242/jcs.107.11.2983
10.1126/science.3952490
10.1016/0014-5793(76)80704-1
10.1016/S0022-2836(03)00025-1
10.1074/jbc.M006801200
10.1021/bi992628w
10.1093/emboj/20.18.5207
10.1074/jbc.270.38.22514
10.1126/science.1103124
10.1016/S0022-2836(03)00831-3
10.1016/j.cell.2005.10.028
10.1017/S0033583500004297
10.1111/j.1432-1033.1985.tb08730.x
Dates
Type | When |
---|---|
Created | 19 years, 4 months ago (April 14, 2006, 8:16 p.m.) |
Deposited | 3 years, 4 months ago (April 12, 2022, 3:14 p.m.) |
Indexed | 22 hours, 18 minutes ago (Aug. 31, 2025, 6:16 a.m.) |
Issued | 19 years, 4 months ago (April 25, 2006) |
Published | 19 years, 4 months ago (April 25, 2006) |
Published Online | 19 years, 4 months ago (April 25, 2006) |
Published Print | 19 years, 4 months ago (April 25, 2006) |
@article{Robinson_2006, title={EM measurements define the dimensions of the “30-nm” chromatin fiber: Evidence for a compact, interdigitated structure}, volume={103}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0601212103}, DOI={10.1073/pnas.0601212103}, number={17}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Robinson, Philip J. J. and Fairall, Louise and Huynh, Van A. T. and Rhodes, Daniela}, year={2006}, month=apr, pages={6506–6511} }