Abstract
The cornerstone of autotrophy, the CO 2 -fixing enzyme, d -ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is hamstrung by slow catalysis and confusion between CO 2 and O 2 as substrates, an “abominably perplexing” puzzle, in Darwin's parlance. Here we argue that these characteristics stem from difficulty in binding the featureless CO 2 molecule, which forces specificity for the gaseous substrate to be determined largely or completely in the transition state. We hypothesize that natural selection for greater CO 2 /O 2 specificity, in response to reducing atmospheric CO 2 :O 2 ratios, has resulted in a transition state for CO 2 addition in which the CO 2 moiety closely resembles a carboxylate group. This maximizes the structural difference between the transition states for carboxylation and the competing oxygenation, allowing better differentiation between them. However, increasing structural similarity between the carboxylation transition state and its carboxyketone product exposes the carboxyketone to the strong binding required to stabilize the transition state and causes the carboxyketone intermediate to bind so tightly that its cleavage to products is slowed. We assert that all Rubiscos may be nearly perfectly adapted to the differing CO 2 , O 2 , and thermal conditions in their subcellular environments, optimizing this compromise between CO 2 /O 2 specificity and the maximum rate of catalytic turnover. Our hypothesis explains the feeble rate enhancement displayed by Rubisco in processing the exogenously supplied carboxyketone intermediate, compared with its nonenzymatic hydrolysis, and the positive correlation between CO 2 /O 2 specificity and 12 C/ 13 C fractionation. It further predicts that, because a more product-like transition state is more ordered (decreased entropy), the effectiveness of this strategy will deteriorate with increasing temperature.
References
58
Referenced
652
10.1016/0968-0004(79)90212-3
- T. J. Andrews, G. H. Lorimer The Biochemistry of Plants: A Comprehensive Treatise, eds M. D. Hatch, N. K. Boardman (Academic, New York) Vol. 10, 131–218 (1987). / The Biochemistry of Plants: A Comprehensive Treatise by Andrews T. J. (1987)
10.1146/annurev.arplant.53.100301.135233
10.1016/S0003-9861(03)00100-0
10.1038/243359a0
10.1021/bi00355a029
- C. Somerville, J. Fitchen, S. Somerville, L. McIntosh, F. Nargang Advances in Gene Technology: Molecular Genetics of Plants and Animals, eds K. Downey, R. W. Voellmy, J. Schultz, F. Ahmad (Academic, New York), pp. 295–309 (1984). / Advances in Gene Technology: Molecular Genetics of Plants and Animals by Somerville C. (1984)
-
S. J. Gould R. C. Lewontin 205 581–598 (1979).
(
10.1098/rspb.1979.0086
) 10.1038/291513a0
10.1016/0003-9861(83)90472-1
10.1046/j.1365-3040.2004.01142.x
10.1021/ar00153a005
10.1098/rstb.1986.0046
10.1038/223704a0
10.1016/S0021-9258(18)68901-X
-
H. Roy, T. J. Andrews Photosynthesis: Physiology and Metabolism, eds R. C. Leegood, T. D. Sharkey, S. von Caemmerer (Kluwer, Dordrecht, The Netherlands), pp. 53–83 (2000).
(
10.1007/0-306-48137-5_3
) / Photosynthesis: Physiology and Metabolism by Roy H. (2000) 10.1021/cr970010r
10.1021/ja011362p
10.1016/S0021-9258(18)67516-7
10.1063/1.1747368
10.1016/S0076-6879(99)08016-7
- L. Melander Isotope Effects on Reaction Rates (Ronald, New York, 1960). / Isotope Effects on Reaction Rates by Melander L. (1960)
10.1021/bi00556a021
10.1071/FP04211
10.1104/pp.101.1.37
10.1042/bj1830747
- S. D. Cox, R. M. Lilley, T. J. Andrews Aust. J. Plant Physiol 26, 475–484 (1999). / Aust. J. Plant Physiol by Cox S. D. (1999)
10.1074/jbc.M212402200
10.1074/jbc.M305493200
10.1007/BF00194282
10.1021/bi00086a006
10.1007/BF00398720
10.1006/bbrc.1997.6497
10.1111/j.1365-3040.2005.01300.x
10.1073/pnas.261417298
10.1016/0003-9861(79)90052-3
10.1021/bi00265a003
10.1021/bi00265a005
10.1021/bi00366a024
10.1104/pp.54.5.678
- C. D. Hodgman, R. C. Weast, S. M. Selby Handbook of Chemistry and Physics, eds C. D. Hodgman, R. C. Weast, S. M. Selby (Chemical Rubber, 41st Ed., Cleveland), pp. 1706–1707 (1959). / Handbook of Chemistry and Physics by Hodgman C. D. (1959)
10.4319/lo.2003.48.1.0048
- H. J. Kane, J. Viil, B. Entsch, K. Paul, M. K. Morell, T. J. Andrews Aust. J. Plant Physiol 21, 449–461 (1994). / Aust. J. Plant Physiol by Kane H. J. (1994)
10.1016/0014-5793(90)80879-N
10.1002/pro.5560070322
10.1016/0003-9861(85)90651-4
10.1016/0003-9861(80)90509-3
10.1016/S0021-9258(18)89117-7
10.1016/S0021-9258(17)37164-8
10.1023/A:1006020424581
10.1093/oxfordjournals.jbchem.a122676
10.1104/pp.102.1.21
10.1093/jexbot/53.369.609
- M. R. Badger, G. J. Collatz Carnegie Yrbk 76, 355–361 (1977). / Carnegie Yrbk by Badger M. R. (1977)
10.1046/j.1365-313x.2001.01056.x
10.1104/pp.105.063768
10.1104/pp.74.4.791
10.1111/j.1469-8137.1994.tb04278.x
Dates
Type | When |
---|---|
Created | 19 years, 4 months ago (April 26, 2006, 8:39 p.m.) |
Deposited | 3 years, 4 months ago (April 12, 2022, 3:17 p.m.) |
Indexed | 1 week ago (Aug. 19, 2025, 6:31 a.m.) |
Issued | 19 years, 3 months ago (May 9, 2006) |
Published | 19 years, 3 months ago (May 9, 2006) |
Published Online | 19 years, 3 months ago (May 9, 2006) |
Published Print | 19 years, 3 months ago (May 9, 2006) |
@article{Tcherkez_2006, title={Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized}, volume={103}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0600605103}, DOI={10.1073/pnas.0600605103}, number={19}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Tcherkez, Guillaume G. B. and Farquhar, Graham D. and Andrews, T. John}, year={2006}, month=may, pages={7246–7251} }