Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

We investigate, for two water models displaying a liquid–liquid critical point, the relation between changes in dynamic and thermodynamic anomalies arising from the presence of the liquid–liquid critical point. We find a correlation between the dynamic crossover and the locus of specific heat maxima \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}C_{P}^{{\mathrm{max}}}\end{equation*}\end{document} (“Widom line”) emanating from the critical point. Our findings are consistent with a possible relation between the previously hypothesized liquid–liquid phase transition and the transition in the dynamics recently observed in neutron scattering experiments on confined water. More generally, we argue that this connection between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}C_{P}^{{\mathrm{max}}}\end{equation*}\end{document} and dynamic crossover is not limited to the case of water, a hydrogen bond network-forming liquid, but is a more general feature of crossing the Widom line. Specifically, we also study the Jagla potential, a spherically symmetric two-scale potential known to possess a liquid–liquid critical point, in which the competition between two liquid structures is generated by repulsive and attractive ramp interactions.

Bibliography

Xu, L., Kumar, P., Buldyrev, S. V., Chen, S.-H., Poole, P. H., Sciortino, F., & Stanley, H. E. (2005). Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proceedings of the National Academy of Sciences, 102(46), 16558–16562.

Authors 7
  1. Limei Xu (first)
  2. Pradeep Kumar (additional)
  3. S. V. Buldyrev (additional)
  4. S.-H. Chen (additional)
  5. P. H. Poole (additional)
  6. F. Sciortino (additional)
  7. H. E. Stanley (additional)
References 41 Referenced 718
  1. Debenedetti P. G. (1996) Metastable Liquids: Concepts and Principles (Princeton Univ. Press Princeton). (10.1515/9780691213941)
  2. Levelt J. M. H. (1958) Ph.D. Thesis (Univ. of Amsterdam Van Gorkum & Co. Assen The Netherlands).
  3. 10.1016/S0031-8914(58)80093-2
  4. 10.1016/S0031-8914(58)80080-4
  5. Anisimov M. A. Sengers J. V. & Levelt Sengers J. M. H. (2004) in Aqueous System at Elevated Temperatures and Pressures: Physical Chemistry in Water Stream and Hydrothermal Solutions eds. Palmer D. A. Fernandez-Prini R. & Harvey A. H. (Elsevier Amsterdam) pp. 29–71. (10.1016/B978-012544461-3/50003-X)
  6. Robinson G. W. Zhu S.-B. Singh S. & Evans M. W. (1996) Water in Biology Chemistry and Physics: Experimental Overviews and Computational Methodologies (World Scientific Singapore). (10.1142/2923)
  7. Bellissent-Funel M.-C. ed. (1999) Hydration Processes in Biology: Theoretical and Experimental Approaches (IOS Press Amsterdam).
  8. 10.1021/j100126a005
  9. 10.1088/0953-8984/15/45/R01
  10. 10.1016/S0378-4371(03)00012-8
  11. 10.1146/annurev.physchem.55.091602.094156
  12. 10.1103/PhysRevB.60.3169
  13. 10.1103/PhysRevLett.59.1128
  14. Lang, E. W. & Lüdemann, H. D. (2004) Angew Chem. Intl. Ed. Engl. 21, 315–329. / Angew Chem. Intl. Ed. Engl. (2004)
  15. 10.1038/19042
  16. 10.1063/1.480241
  17. 10.1088/0953-8984/11/50/317
  18. 10.1103/PhysRevE.63.061509
  19. 10.1088/0953-8984/15/45/L03
  20. 10.1038/360324a0
  21. 10.1038/24540
  22. 10.1038/35055514
  23. 10.1103/PhysRevLett.91.155701
  24. 10.1038/35002027
  25. 10.1063/1.1832595
  26. 10.1103/PhysRevLett.95.117802
  27. 10.1038/35087524
  28. 10.1038/nmat994
  29. 10.1073/pnas.1233719100
  30. 10.1063/1.444325
  31. 10.1063/1.1678388
  32. 10.1103/PhysRevE.72.021501
  33. 10.1103/PhysRevLett.88.195701
  34. 10.1016/j.physa.2003.08.003
  35. 10.1103/PhysRevLett.94.217802
  36. Götze W. (1991) in Liquids Freezing and Glass Transition eds. Hansen J. P. Levesque D. & Zinn-Justin J. (North–Holland Amsterdam) pp. 287–503.
  37. 10.1088/0953-8984/17/43/L01
  38. 10.1063/1.1696442
  39. 10.1063/1.433518
  40. 10.1038/35018034
  41. Maruyama, S., Wakabayashi, K. & Oguni, M. (2004) Am. Inst. Phys. Conf. Proc. 708, 675–676. / Am. Inst. Phys. Conf. Proc. (2004)
Dates
Type When
Created 19 years, 9 months ago (Nov. 2, 2005, 8:25 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 2:08 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 8:01 a.m.)
Issued 19 years, 9 months ago (Nov. 2, 2005)
Published 19 years, 9 months ago (Nov. 2, 2005)
Published Online 19 years, 9 months ago (Nov. 2, 2005)
Published Print 19 years, 9 months ago (Nov. 15, 2005)
Funders 0

None

@article{Xu_2005, title={Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition}, volume={102}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0507870102}, DOI={10.1073/pnas.0507870102}, number={46}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Xu, Limei and Kumar, Pradeep and Buldyrev, S. V. and Chen, S.-H. and Poole, P. H. and Sciortino, F. and Stanley, H. E.}, year={2005}, month=nov, pages={16558–16562} }