Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

One of many protein–protein interactions modulated upon DNA damage is that of the single-stranded DNA-binding protein, replication protein A (RPA), with the p53 tumor suppressor. Here we report the crystal structure of RPA residues 1–120 (RPA70N) bound to the N-terminal transactivation domain of p53 (residues 37–57; p53N) and, by using NMR spectroscopy, characterize two mechanisms by which the RPA/p53 interaction can be modulated. RPA70N forms an oligonucleotide/oligosaccharide-binding fold, similar to that previously observed for the ssDNA-binding domains of RPA. In contrast, the N-terminal p53 transactivation domain is largely disordered in solution, but residues 37–57 fold into two amphipathic helices, H1 and H2, upon binding with RPA70N. The H2 helix of p53 structurally mimics the binding of ssDNA to the oligonucleotide/oligosaccharide-binding fold. NMR experiments confirmed that both ssDNA and an acidic peptide mimicking a phosphorylated form of RPA32N can independently compete the acidic p53N out of the binding site. Taken together, our data suggest a mechanism for DNA damage signaling that can explain a threshold response to DNA damage.

Bibliography

Bochkareva, E., Kaustov, L., Ayed, A., Yi, G.-S., Lu, Y., Pineda-Lucena, A., Liao, J. C. C., Okorokov, A. L., Milner, J., Arrowsmith, C. H., & Bochkarev, A. (2005). Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proceedings of the National Academy of Sciences, 102(43), 15412–15417.

Authors 11
  1. Elena Bochkareva (first)
  2. Lilia Kaustov (additional)
  3. Ayeda Ayed (additional)
  4. Gwan-Su Yi (additional)
  5. Ying Lu (additional)
  6. Antonio Pineda-Lucena (additional)
  7. Jack C. C. Liao (additional)
  8. Andrei L. Okorokov (additional)
  9. Jo Milner (additional)
  10. Cheryl H. Arrowsmith (additional)
  11. Alexey Bochkarev (additional)
References 49 Referenced 245
  1. 10.1101/gad.10.9.1054
  2. 10.1016/S0092-8674(00)81871-1
  3. 10.1038/365079a0
  4. 10.1016/0092-8674(93)90650-F
  5. 10.1016/0092-8674(93)90649-B
  6. 10.1038/sj.onc.1207982
  7. 10.1158/0008-5472.CAN-03-0231
  8. 10.1073/pnas.94.14.7186
  9. 10.1126/science.8023157
  10. 10.1128/MCB.17.4.2194
  11. 10.1146/annurev.biochem.66.1.61
  12. 10.1016/j.sbi.2004.01.001
  13. 10.1002/j.1460-2075.1993.tb05726.x
  14. 10.1093/nar/29.15.3270
  15. 10.1128/mcb.13.12.7222-7231.1993
  16. 10.1073/pnas.91.26.12520
  17. 10.1093/nar/gkh265
  18. 10.1073/pnas.93.26.15075
  19. 10.1002/j.1460-2075.1992.tb05278.x
  20. Wang, H., Guan, J., Wang, H., Perrault, A. R., Wang, Y. & Iliakis, G. (2001) Cancer Res. 61, 8554-8563.11731442 / Cancer Res. (2001)
  21. 10.1016/j.dnarep.2004.03.028
  22. Leiter, L. M., Chen, J., Marathe, T., Tanaka, M. & Dutta, A. (1996) Oncogene 12, 2661-2668.8700525 / Oncogene (1996)
  23. 10.1074/jbc.271.29.17190
  24. 10.1093/nar/gki336
  25. 10.1007/BF00197809
  26. 10.1007/BF00227465
  27. Otwinoski Z. & Minor W. (1997) in Macromolecular Crystallography Part A . eds. Carter C. W. Jr. & Sweet R. M. (Academic Orlando FL) pp. 307-326. (10.1016/S0076-6879(97)76066-X)
  28. Furey W. & Swaminathan S. (1997) in Methods in Enzymology: Macromolecular Crystallography Part B . eds. Carter C. W. J. & Sweet R. M. (Academic Orlando FL) pp. 590-620. (10.1016/S0076-6879(97)77033-2)
  29. 10.1107/S0021889897006766
  30. 10.1038/8263
  31. 10.1107/S0108767390010224
  32. Murshudov, G., Vagin, A. & Dodson, E. (1996) Acta Crystallogr. D 53, 240-255. / Acta Crystallogr. D (1996)
  33. Carson M. (1997) in Macromolecular Crystallography Part B . eds. Carter C. W. Jr. & Sweet R. M. (Academic Orlando FL) pp. 493-505. (10.1016/S0076-6879(97)77027-7)
  34. 10.1023/A:1008373009786
  35. 10.1126/science.297.5588.1837
  36. 10.1126/science.274.5289.948
  37. 10.1038/385176a0
  38. 10.1038/sj.onc.1207005
  39. 10.1093/emboj/18.23.6845
  40. 10.1016/S0092-8674(00)00073-8
  41. 10.1016/0167-8140(96)01712-4
  42. 10.1093/nar/28.19.3725
  43. 10.1074/jbc.M305388200
  44. 10.1074/jbc.272.38.23896
  45. 10.1038/sj.onc.1204883
  46. 10.1093/emboj/20.3.612
  47. 10.1074/jbc.M400029200
  48. 10.1074/jbc.M505705200
  49. 10.1038/sj.onc.1206071
Dates
Type When
Created 19 years, 10 months ago (Oct. 17, 2005, 8:34 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 2:05 p.m.)
Indexed 4 weeks, 1 day ago (July 30, 2025, 10:09 a.m.)
Issued 19 years, 10 months ago (Oct. 17, 2005)
Published 19 years, 10 months ago (Oct. 17, 2005)
Published Online 19 years, 10 months ago (Oct. 17, 2005)
Published Print 19 years, 10 months ago (Oct. 25, 2005)
Funders 0

None

@article{Bochkareva_2005, title={Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A}, volume={102}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0504614102}, DOI={10.1073/pnas.0504614102}, number={43}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Bochkareva, Elena and Kaustov, Lilia and Ayed, Ayeda and Yi, Gwan-Su and Lu, Ying and Pineda-Lucena, Antonio and Liao, Jack C. C. and Okorokov, Andrei L. and Milner, Jo and Arrowsmith, Cheryl H. and Bochkarev, Alexey}, year={2005}, month=oct, pages={15412–15417} }