Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Small and large hydrophobic solutes exhibit remarkably different hydration thermodynamics. Small solutes are accommodated in water with minor perturbations to water structure, and their hydration is captured accurately by theories that describe density fluctuations in pure water. In contrast, hydration of large solutes is accompanied by dewetting of their surfaces and requires a macroscopic thermodynamic description. A unified theoretical description of these lengthscale dependencies was presented by Lum, Chandler, and Weeks [(1999) J. Phys. Chem. B 103, 4570–4577]. Here, we use molecular simulations to study lengthscale-dependent hydrophobic hydration under various thermodynamic conditions. We show that the hydration of small and large solutes displays disparate dependencies on thermodynamic variables, including pressure, temperature, and additive concentration. Understanding these dependencies allows manipulation of the small-to-large crossover lengthscale, which is nanoscopic under ambient conditions. Specifically, applying hydrostatic tension or adding ethanol decreases the crossover length to molecular sizes, making it accessible to atomistic simulations. With detailed temperature-dependent studies, we further demonstrate that hydration thermodynamics changes gradually from entropic to enthalpic near the crossover. The nanoscopic lengthscale of the crossover and its sensitivity to thermodynamic variables imply that quantitative modeling of biomolecular self-assembly in aqueous solutions requires elements of both molecular and macroscopic hydration physics. We also show that the small-to-large crossover is directly related to the Egelstaff-Widom lengthscale, the product of surface tension and isothermal compressibility, which is another fundamental lengthscale in liquids.

Bibliography

Rajamani, S., Truskett, T. M., & Garde, S. (2005). Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover. Proceedings of the National Academy of Sciences, 102(27), 9475–9480.

Authors 3
  1. Sowmianarayanan Rajamani (first)
  2. Thomas M. Truskett (additional)
  3. Shekhar Garde (additional)
References 64 Referenced 272
  1. Chandler D. (2005) Nature in press.
  2. 10.1016/S0065-3233(08)60608-7
  3. Tanford C. (1973) The Hydrophobic Effect (Wiley New York).
  4. 10.1021/bi00483a001
  5. Maibaum, L., Dinner, A. R. & Chandler, D. (2004) J. Phys. Chem. B 108, 6778-6781. / J. Phys. Chem. B (2004)
  6. 10.1063/1.435308
  7. 10.1063/1.438701
  8. 10.1063/1.464809
  9. 10.1063/1.465634
  10. 10.1021/j100053a044
  11. 10.1021/jp982873
  12. 10.1016/S0301-0104(00)00115-4
  13. 10.1146/annurev.physchem.53.090401.093500
  14. 10.1021/jp984327m
  15. 10.1038/417491a
  16. 10.1073/pnas.93.17.8951
  17. 10.1103/PhysRevLett.77.4966
  18. 10.1021/jp990337r
  19. 10.1007/BF00651970
  20. 10.1103/PhysRevLett.80.4193
  21. 10.1073/pnas.120176397
  22. 10.1073/pnas.052153299
  23. 10.1021/j100009a053
  24. 10.1021/ja016324k
  25. 10.1073/pnas.1934837100
  26. 10.1126/science.1101176
  27. 10.1021/ja0441817
  28. 10.1021/jp0104029
  29. 10.1063/1.1674388
  30. 10.1007/s008940100045
  31. 10.1016/0010-4655(95)00042-E
  32. 10.1063/1.448118
  33. 10.1021/j100308a038
  34. 10.1021/j100395a005
  35. 10.1063/1.449287
  36. Frenkel D. & Smit B. (2002) Understanding Molecular Simulations (Academic San Diego) 2nd Ed. (10.1016/B978-012267351-1/50005-5)
  37. 10.1063/1.466363
  38. 10.1021/j100398a015
  39. 10.1063/1.1431582
  40. 10.1021/ja00169a011
  41. 10.1103/PhysRevE.61.1501
  42. Debenedetti P. G. (1996) Metastable Liquids (Princeton Univ. Press Princeton).
  43. 10.1126/science.249.4969.649
  44. 10.1126/science.254.5033.829
  45. 10.1063/1.1376424
  46. 10.1021/j100395a030
  47. 10.1063/1.479540
  48. Punnathanam, S. & Corti, D. S. (2004) Phys. Rev. E 69, 036105-1-036105-8. / Phys. Rev. E (2004)
  49. 10.1073/pnas.89.7.2995
  50. 10.1063/1.1336569
  51. Ben-Naim A. (1980) Hydrophobic Interaction (Plenum New York). (10.1007/978-1-4684-3545-0)
  52. 10.1080/00319107108083813
  53. Prausnitz J. M. (1986) Molecular Thermodynamics of Fluid Phase Equilibria (Prentice–Hall Englewood Cliffs NJ).
  54. 10.1016/S0301-4622(99)00018-6
  55. 10.1063/1.1730361
  56. 10.1021/ie030361y
  57. 10.1021/j100847a014
  58. 10.1002/aic.690430225
  59. Collins, K. D. & Washabaugh, M. W. (1985) Q. Rev. Biophys. 4, 323-422. / Q. Rev. Biophys. (1985)
  60. 10.1016/j.ymeth.2004.03.021
  61. Ashbaugh H. S. & Pratt L. R. (2005) Rev. Mod. Phys. arXiv archive http://arxiv.org/abs/physics/0307109.
  62. 10.1038/35070698
  63. 10.1103/PhysRevLett.93.185701
  64. 10.1073/pnas.0407968101
Dates
Type When
Created 20 years, 2 months ago (June 22, 2005, 9:25 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 2:24 p.m.)
Indexed 1 week, 2 days ago (Aug. 20, 2025, 8:36 a.m.)
Issued 20 years, 2 months ago (June 22, 2005)
Published 20 years, 2 months ago (June 22, 2005)
Published Online 20 years, 2 months ago (June 22, 2005)
Published Print 20 years, 1 month ago (July 5, 2005)
Funders 0

None

@article{Rajamani_2005, title={Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover}, volume={102}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0504089102}, DOI={10.1073/pnas.0504089102}, number={27}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Rajamani, Sowmianarayanan and Truskett, Thomas M. and Garde, Shekhar}, year={2005}, month=jun, pages={9475–9480} }