Crossref journal-article
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences (341)
Abstract

Our application of transition path sampling to a complex biomolecular system in explicit solvent, the closing transition of DNA polymerase β, unravels atomic and energetic details of the conformational change that precedes the chemical reaction of nucleotide incorporation. The computed reaction profile offers detailed mechanistic insights into, as well as kinetic information on, the complex process essential for DNA synthesis and repair. The five identified transition states extend available experimental and modeling data by revealing highly cooperative dynamics and critical roles of key residues (Arg-258, Phe-272, Asp-192, and Tyr-271) in the enzyme's function. The collective cascade of these sequential conformational changes brings the DNA/DNA polymerase β system to a state nearly competent for the chemical reaction and suggests how subtle residue motions and conformational rate-limiting steps affect reaction efficiency and fidelity; this complex system of checks and balances directs the system to the chemical reaction and likely helps the enzyme discriminate the correct from the incorrect incoming nucleotide. Together with the chemical reaction, these conformational features may be central to the dual nature of polymerases, requiring specificity (for correct nucleotide selection) as well as versatility (to accommodate different templates at every step) to maintain overall fidelity. Besides leading to these biological findings, our developed protocols open the door to other applications of transition path sampling to long-time, large-scale biomolecular reactions.

Authors 2
  1. Ravi Radhakrishnan (first)
  2. Tamar Schlick (additional)
References 62 Referenced 126
  1. Schlick T. (2002) Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer New York) pp. 345–462. (10.1007/978-0-387-22464-0_11)
  2. 10.1126/science.282.5389.740
  3. Schlick, T., Beard, D. A., Huang, J., Strahs, D. & Qian, X. (2000) IEEE Comput. Sci. Eng. 2, 38–51. / IEEE Comput. Sci. Eng. (2000)
  4. 10.1021/ar0100172
  5. 10.1063/1.1289822
  6. 10.1073/pnas.201543998
  7. 10.1038/nature01160
  8. 10.1016/S0959-440X(00)00062-2
  9. 10.1006/jmbi.2001.5033
  10. Elber, R., Cárdenas, A., Ghosh, A. & Stern, H. (2003) Adv. Chem. Phys. 126, 93–129. / Adv. Chem. Phys. (2003)
  11. 10.1016/S0010-4655(00)00038-2
  12. 10.1006/jmbi.1998.1885
  13. 10.1016/S0006-3495(03)74448-8
  14. 10.1006/jmbi.2002.5450
  15. 10.1016/S0022-2836(02)00617-4
  16. 10.1016/S0092-8674(01)00301-4
  17. 10.1002/(SICI)1097-0134(20000515)39:3<252::AID-PROT80>3.0.CO;2-3
  18. 10.1146/annurev.physchem.53.082301.113146
  19. 10.1021/bi9703812
  20. 10.1016/S0921-8777(98)00002-0
  21. 10.1093/emboj/17.24.7514
  22. 10.1016/S0959-440X(98)80089-4
  23. Kiefer, J. R., Mao, C., Braman, J. C. & Beese, L. S. (1998) Nature 391, 302–305. / Nature (1998)
  24. Koshland, D. E. (1994) Angew. Chem. Int. Ed. Engl. 33, 2375–2378. / Angew. Chem. Int. Ed. Engl. (1994)
  25. 10.1016/S1074-5521(98)90081-3
  26. 10.1016/S0969-2126(99)80017-3
  27. 10.1021/bi961653o
  28. 10.1042/bj3310079
  29. 10.1074/jbc.M002884200
  30. 10.1074/jbc.M008680200
  31. 10.1021/bi9527202
  32. 10.1074/jbc.271.21.12141
  33. 10.1021/bi00049a008
  34. 10.1126/science.7516580
  35. 10.1074/jbc.273.42.27250
  36. 10.1042/bj3230103
  37. 10.1021/bi963181j
  38. 10.1021/bi00234a002
  39. 10.1021/bi00399a057
  40. 10.1021/bi00216a030
  41. 10.1021/bi00216a029
  42. 10.1021/bi00028a031
  43. 10.1021/bi00160a007
  44. Yang L. Broyde S. Beard W. A. Wilson S. H. & Schlick T. (2004) Biophys. J. 86 in press. (10.1529/biophysj.103.036012)
  45. 10.1074/jbc.M210036200
  46. Crooks G. E. (1999) Ph.D. Thesis (University of California Berkeley).
  47. 10.1073/pnas.100127197
  48. 10.1039/a808871c
  49. 10.1103/PhysRevLett.90.158301
  50. 10.1073/pnas.052153299
  51. 10.1073/pnas.1534924100
  52. 10.1002/jcc.540040211
  53. 10.1002/jcc.1135
  54. 10.1021/ja028997o
  55. 10.1016/S0006-3495(00)76405-8
  56. 10.1039/a801266k
  57. 10.1021/ja00778a043
  58. 10.1073/pnas.0630532100
  59. 10.1073/pnas.90.14.6498
  60. 10.1021/bi026021i
  61. 10.1016/S0009-2614(03)01195-3
  62. 10.1063/1.1557413
Dates
Type When
Created 21 years, 4 months ago (April 6, 2004, 10:12 p.m.)
Deposited 3 years, 4 months ago (April 12, 2022, 9:58 a.m.)
Indexed 1 year ago (Aug. 12, 2024, 9:16 a.m.)
Issued 21 years, 4 months ago (April 6, 2004)
Published 21 years, 4 months ago (April 6, 2004)
Published Online 21 years, 4 months ago (April 6, 2004)
Published Print 21 years, 4 months ago (April 20, 2004)
Funders 0

None

@article{Radhakrishnan_2004, title={Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase β’s closing}, volume={101}, ISSN={1091-6490}, url={http://dx.doi.org/10.1073/pnas.0308585101}, DOI={10.1073/pnas.0308585101}, number={16}, journal={Proceedings of the National Academy of Sciences}, publisher={Proceedings of the National Academy of Sciences}, author={Radhakrishnan, Ravi and Schlick, Tamar}, year={2004}, month=apr, pages={5970–5975} }