Crossref journal-article
AIP Publishing
Physics of Fluids (317)
Abstract

We propose new dynamical equations to describe fully developed turbulence. We begin with the Wyld equations (WE), which are exact solutions of the NSE. The WE, and their Langevin-like representation, show that nonlinearities induce a turbulent force ft(k) and a turbulent viscosity νt(k), which are given by an infinite series of Wyld diagrams. The series for νt(k) is renormalizable, and its sum can be found using RNG methods. The result, Eq. (2a), holds for stirring forces fext with an arbitrary correlation function φ and generalizes previous RNG results, which neglected ft and were limited to power law φ∼k1−2ε. To recover Kolmogorov law, these earlier RNG-based theories were forced to introduce an ad hoc stirring force with a prescribed φ∼k−3. By contrast, we show that ∼k−3 belongs to φ̃, which is the correlation function of ft, and that in the inertial range ft≫fext. The series for φ̃ cannot be summed because of a nonrenormalizable infrared divergence (IR) with an infinite number of divergent irreducible diagrams. To overcome this difficulty, we use the well-accepted notion of local energy transfer and we derive an expression for the energy flux Π(k), Eq. (2d), as well as a dynamical equation for the energy spectrum E(k), Eq. (2b). We also construct the dynamical equations for Reynolds stress spectra (solved in papers II and III). An analogous approach is developed for the temperature field. The model contains no free parameters. Some of its predictions are Kolmogorov spectrum E(k)∼k−5/3 with Ko=5/3, in agreement with recent data; temperature spectrum in the inertial-convective region Eθ∼Ba ε̄−1/3εθk−5/3, in agreement with the data; Batchelor constant Ba=σt Ko. In addition, in papers II and III we carry out extensive comparisons with the laboratory, DNS, LES data, and phenomenological models. The model can be used to construct a subgrid model for LES calculations.

Bibliography

Canuto, V. M., & Dubovikov, M. S. (1996). A dynamical model for turbulence. I. General formalism. Physics of Fluids, 8(2), 571–586.

Authors 2
  1. V. M. Canuto (first)
  2. M. S. Dubovikov (additional)
References 38 Referenced 85
  1. 10.1016/0003-4916(61)90056-2 / Ann. Phys. / Formulation of the theory of turbulence in an incompressible fluid (1961)
  2. {'key': '2024020518440552200_r2'}
  3. {'key': '2024020518440552200_r3'}
  4. {'key': '2024020518440552200_r4', 'first-page': '111', 'article-title': 'The method of diagrams in perturbation theory', 'volume': '29', 'year': '1974', 'journal-title': 'Usp. Mat. Nauk.'} / Usp. Mat. Nauk. / The method of diagrams in perturbation theory (1974)
  5. 10.1016/0370-1573(91)90081-V / Phys. Rep. / Scale invariant theory of fully developed hydrodynamic turbulence. Hamiltonian approach (1991)
  6. 10.1016/0003-4916(65)90019-9 / Ann. Phys. / A formulation of the theory of isotropic hydromagnetic turbulence in an incompressible fluid (1965)
  7. 10.1017/S0022112064000180 / J. Fluid Mech. / The statistical dynamics of homogeneous turbulence (1964)
  8. 10.1098/rspa.1955.0070 / Proc. R. Soc. London Ser. A / A theory of turbulence (1955)
  9. 10.1063/1.1761928 / Phys. Fluids / Isotropic turbulence and inertial range structure (1966)
  10. 10.1007/BF01061452 / J. Sci. Comput. / Renormalization group analysis of turbulence. I. Basic theory (1986)
  11. 10.1017/S0022112070000587 / J. Fluid Mech. / Convergent to turbulence functions (1970)
  12. 10.1017/S0022112071001204 / J. Fluid Mech. / An almost Markovian Galilean-invariant turbulence model (1971)
  13. 10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2 / J. Atmos. Sci. / Atmospheric predictability and two-dimensional turbulence (1971)
  14. {'key': '2024020518440552200_r13'}
  15. 10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2 / J. Atmos. Sci. / Eddy viscosity in two and three dimensions (1976)
  16. {'key': '2024020518440552200_r15'}
  17. 10.1063/1.857878 / Phys. Fluids A / Simulation of the Kolmogorov inertial subrange using an improved subgrid model (1991)
  18. 10.1103/PhysRevA.19.419 / Phys. Rev. A / Energy spectra of certain randomly stirred fluids (1979)
  19. 10.1063/1.866130 / Phys. Fluids / An interpretation of the Yakhot-Orszag turbulence theory (1987)
  20. 10.1063/1.858310 / Phys. Fluids A / On the Yakhot-Orszag RNG method for deriving turbulence statistics and models (1992)
  21. 10.1063/1.868131 / Phys. Fluids / The RNG method in statistical hydrodynamics (1994)
  22. 10.1063/1.1762300 / Phys. Fluids / Diffusion approximation to inertial energy transfer in isotropic turbulence (1967)
  23. 10.1017/S0022112060000943 / J. Fluid Mech. / An approximate equation for the spectrum of a conserved quantity in a turbulent field (1960)
  24. 10.1063/1.866472 / Phys. Fluids / A model for fully developed turbulence (1987)
  25. {'key': '2024020518440552200_r24'}
  26. 10.1103/PhysRevA.16.732 / Phys. Rev. A / Large-distance and long-time properties of a randomly stirred fluid (1977)
  27. {'key': '2024020518440552200_r26', 'first-page': '1300', 'article-title': 'Quantum electrodynamics at small distances', 'volume': '95', 'year': '1953', 'journal-title': 'Phys. Rev.'} / Phys. Rev. / Quantum electrodynamics at small distances (1953)
  28. 10.1103/PhysRevA.28.1000 / Phys Rev. A / Remarks on the renormalization group in statistical fluid dynamics (1983)
  29. {'key': '2024020518440552200_r27a', 'first-page': '41', 'article-title': 'Approximate and exact renormalization theories for a model for turbulent transport', 'volume': '4', 'year': '1990', 'journal-title': 'Phys. Fluids A'} / Phys. Fluids A / Approximate and exact renormalization theories for a model for turbulent transport (1990)
  30. 10.1063/1.868435 / Phys. Fluids / Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers (1994)
  31. 10.1017/S0022112094001370 / J. Fluid Mech. / Local isotropy in turbulent boundary layer at high Reynolds number (1994)
  32. 10.1017/S0022112059000106 / J. Fluid Mech. / Small scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity (1959)
  33. 10.1063/1.866980 / Phys. Fluids / Analysis of energy transfer in direct numerical simulations of isotropic turbulence (1988)
  34. 10.1063/1.858373 / Phys. Fluids A / Nonlocal triad interaction and the dissipative range of isotropic turbulence (1992)
  35. 10.1063/1.857736 / Phys. Fluids A / Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence (1990)
  36. 10.1063/1.858764 / Phys. Fluids A / Interacting scales and energy transfer in isotropic turbulence (1993)
  37. 10.1017/S0022112071001216 / J. Fluid Mech. / Inertial-range transfer in two-and three dimensional turbulence (1971)
  38. 10.1016/0167-2789(94)90117-1 / Physica D / Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer (1994)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 8:10 a.m.)
Deposited 1 year, 6 months ago (Feb. 5, 2024, 2:57 p.m.)
Indexed 1 month, 4 weeks ago (July 1, 2025, 6:28 p.m.)
Issued 29 years, 7 months ago (Feb. 1, 1996)
Published 29 years, 7 months ago (Feb. 1, 1996)
Published Print 29 years, 7 months ago (Feb. 1, 1996)
Funders 0

None

@article{Canuto_1996, title={A dynamical model for turbulence. I. General formalism}, volume={8}, ISSN={1089-7666}, url={http://dx.doi.org/10.1063/1.868842}, DOI={10.1063/1.868842}, number={2}, journal={Physics of Fluids}, publisher={AIP Publishing}, author={Canuto, V. M. and Dubovikov, M. S.}, year={1996}, month=feb, pages={571–586} }