Abstract
An N-channel generalization of the network model of Chalker and Coddington is considered. The model for N=1 is known to describe the critical behavior at the plateau transition in systems exhibiting the integer quantum Hall effect. Using a recently discovered equality of integrals, the network model is transformed into a lattice field theory defined over Efetov’s σ model space with unitary symmetry. The transformation is exact for all N, no saddle-point approximation is made, and no massive modes have to be eliminated. The naive continuum limit of the lattice theory is shown to be a supersymmetric version of Pruisken’s nonlinear σ model with couplings σxx=N/4 and σxy=N/2 at the symmetric point. It follows that the model for N=2, which describes a spin degenerate Landau level and the random flux problem, is noncritical. On the basis of symmetry considerations and inspection of the Hamiltonian limit, a modified network model is formulated, which still lies in the quantum Hall universality class. The prospects for deformation to a Yang–Baxter integrable vertex model are briefly discussed.
References
29
Referenced
61
{'key': '2024020622322740000_r1'}
10.1103/PhysRevB.27.7539
/ Phys. Rev. B / Localization, percolation, and the quantum Hall effect (1983)10.1088/0022-3719/21/14/008
/ J. Phys. C / Percolation, quantum tunneling, and the integer quantum Hall effect (1988)10.1103/PhysRevB.50.10788
/ Phys. Rev. B / Network models of quantum percolation and their field-theory representation (1994){'key': '2024020622322740000_r5'}
10.1007/BF01319839
/ Z. Phys. B / The mobility edge problem: Continuous symmetry and a conjecture (1979)10.1080/00018738300101531
/ Adv. Phys. / Supersymmetry and theory of disordered metals (1983)10.1016/0550-3213(84)90101-9
/ Nucl. Phys. B / On localization in the theory of the quantized Hall effect: A two-dimensional realization of the θ-vacuum (1984)10.1016/0550-3213(87)90178-7
/ Nucl. Phys. B / Quasi particles in the theory of the integral quantum Hall effect (II). Renormalization of the Hall conductance or instanton angle theta (1987)10.1016/0550-3213(84)90277-3
/ Nucl. Phys. B / Theory of the quantized Hall effect (I) (1984)10.1016/0550-3213(87)90179-9
/ Nucl. Phys. B / Single electron in a random potential and a strong magnetic field (1987){'key': '2024020622322740000_r12', 'first-page': '552', 'article-title': 'Quantization of Hall conductivity', 'volume': '38', 'year': '1983', 'journal-title': 'JETP Lett.'}
/ JETP Lett. / Quantization of Hall conductivity (1983){'key': '2024020622322740000_r13', 'first-page': '513', 'article-title': 'Towards a theory of the integer quantum Hall transition: From the nonlinear sigma model to superspin chains', 'volume': '3', 'year': '1994', 'journal-title': 'Ann. Phys. (Leipzig)'}
/ Ann. Phys. (Leipzig) / Towards a theory of the integer quantum Hall transition: From the nonlinear sigma model to superspin chains (1994){'key': '2024020622322740000_r13a'}
{'key': '2024020622322740000_r14'}
10.1088/0305-4470/29/22/013
/ J. Phys. A / Supersymmetry for systems with unitary disorder: Circular ensembles (1996){'key': '2024020622322740000_r16'}
{'key': '2024020622322740000_r17', 'first-page': '1093', 'article-title': 'Critique of the replica trick', 'volume': '17', 'year': '1985', 'journal-title': 'J. Phys. A'}
/ J. Phys. A / Critique of the replica trick (1985)10.1016/0550-3213(88)90072-7
/ Nucl. Phys. B / Instanton approximation to the graded nonlinear sigma model for the integer quantum Hall effect (1988)10.1090/S0002-9947-1987-0869418-5
/ Trans. Am. Math. Soc. / Integration on noncompact supermanifolds (1987)10.1063/1.531675
/ J. Math. Phys. / Riemannian symmetric superspaces and their origin in random matrix theory (1996)10.1103/PhysRevLett.72.1510
/ Phys. Rev. Lett. / Unified model for two localization problems: Electron states in spin-degenerate Landau levels and in a random magnetic field (1994){'key': '2024020622322740000_r22'}
{'key': '2024020622322740000_r23'}
10.1016/0550-3213(96)00128-9
/ Nucl. Phys. B / Two-dimensional conformal field theory for disordered systems at criticality (1996){'key': '2024020622322740000_r25'}
{'key': '2024020622322740000_r26'}
{'key': '2024020622322740000_r27'}
10.1016/0550-3213(90)90437-I
/ Nucl. Phys. B / The θ = π nonlinear σ model is massless (1990)
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 26, 2002, 9:50 a.m.) |
Deposited | 1 year, 6 months ago (Feb. 6, 2024, 8:19 p.m.) |
Indexed | 3 weeks, 4 days ago (Aug. 1, 2025, 11:59 p.m.) |
Issued | 28 years, 4 months ago (April 1, 1997) |
Published | 28 years, 4 months ago (April 1, 1997) |
Published Print | 28 years, 4 months ago (April 1, 1997) |
@article{Zirnbauer_1997, title={Toward a theory of the integer quantum Hall transition: Continuum limit of the Chalker–Coddington model}, volume={38}, ISSN={1089-7658}, url={http://dx.doi.org/10.1063/1.531921}, DOI={10.1063/1.531921}, number={4}, journal={Journal of Mathematical Physics}, publisher={AIP Publishing}, author={Zirnbauer, Martin R.}, year={1997}, month=apr, pages={2007–2036} }