Abstract
Functional integrals over anticommuting variables are used to obtain a scattering formula for smooth localized potentials in one dimension. Via a calculational trick, the functional integral is evaluated to obtain the transition matrix coefficients as an expansion in [k′ (x)/k (x)] (k (x) ={ (2m/h/2)[E−V (x)]}1/2). This expansion is shown to have a simple physical interpretation.
References
10
Referenced
4
10.1007/BF02745446
/ Nuovo Cimento (1956){'key': '2023070821350961500_r1a'}
10.1103/PhysRev.82.914
/ Phys. Rev. (1951)10.1073/pnas.47.7.1075
/ Proc. Natl. Acad. Sci. (1961)10.1103/RevModPhys.47.573
/ Rev. Mod. Phys. (1975)10.1103/PhysRevD.16.2476
/ Phys. Rev. D (1977){'key': '2023070821350961500_r4'}
{'key': '2023070821350961500_r5'}
10.1103/PhysRev.82.914
/ Phys. Rev. (1951)10.1073/pnas.47.7.1075
/ Proc. Natl. Acad. Sci. (1961)
Dates
Type | When |
---|---|
Created | 22 years, 5 months ago (March 7, 2003, 12:23 p.m.) |
Deposited | 2 years, 1 month ago (July 8, 2023, 5:35 p.m.) |
Indexed | 1 year, 6 months ago (Feb. 10, 2024, 10:59 a.m.) |
Issued | 47 years, 3 months ago (June 1, 1978) |
Published | 47 years, 3 months ago (June 1, 1978) |
Published Online | 17 years ago (Aug. 11, 2008) |
Published Print | 47 years, 3 months ago (June 1, 1978) |
@article{Samuel_1978, title={Functional integrals over anticommuting variables and the one-dimensional scattering problem}, volume={19}, ISSN={1089-7658}, url={http://dx.doi.org/10.1063/1.523809}, DOI={10.1063/1.523809}, number={6}, journal={Journal of Mathematical Physics}, publisher={AIP Publishing}, author={Samuel, Stuart}, year={1978}, month=jun, pages={1438–1444} }