Abstract
Phonon energies at finite temperatures shift away from their harmonic values due to anharmonicity. In this paper, we have realized the rigorous calculation of phonon energy shifts of silicon by three- and four-phonon scattering from first principles. The anharmonic fourth-order force constants are calculated by considering up to the fifth nearest neighbors. The results agree reasonably well with available data from inelastic neutron scattering throughout the Brillouin zone. Surprisingly, the frequency shifts of optical phonon modes near the Γ point are sensitive to the cutoff radius of the fourth-order force constants, in contrast to the four-phonon scattering rates, which nearly saturate when considering the second nearest neighbors. We have also compared the results with ab initio molecular dynamics simulations and found that the higher order of anharmonicity is important for optical phonons. Our work provides critical insight into the anharmonic phonon frequency shift and will have a significant impact on the thermal and optical applications.
Authors
3
- Tianli Feng (first)
- Xiaolong Yang (additional)
- Xiulin Ruan (additional)
References
53
Referenced
32
10.1103/PhysRev.128.2589
/ Phys. Rev. (1962){'volume-title': 'Thermodynamics of Crystals', 'year': '1998', 'key': '2023062408273471600_c2'}
/ Thermodynamics of Crystals (1998)10.1016/0003-4916(61)90188-9
/ Ann. Phys. (1961)10.1016/j.pmatsci.2009.05.002
/ Prog. Mater. Sci. (2010)10.1103/PhysRevLett.87.087005
/ Phys. Rev. Lett. (2001)10.1103/PhysRevLett.87.037001
/ Phys. Rev. Lett. (2001)10.1103/PhysRevB.66.020513
/ Phys. Rev. B (2002)10.1103/PhysRevLett.99.176802
/ Phys. Rev. Lett. (2007)10.1103/PhysRevB.28.1928
/ Phys. Rev. B (1983)10.1016/j.jqsrt.2012.04.018
/ J. Quant. Spectrosc. Radiat. Transf. (2012){'key': '2023062408273471600_c11', 'first-page': '764', 'volume': '31', 'year': '1997', 'journal-title': 'J. Korean Phys. Soc.'}
/ J. Korean Phys. Soc. (1997)10.1103/PhysRevB.59.6182
/ Phys. Rev. B (1999)10.1103/PhysRevLett.90.095506
/ Phys. Rev. Lett. (2003)10.1103/PhysRevB.68.220509
/ Phys. Rev. B (2003)10.15407/ujpe58.10.0980
/ Ukr. J. Phys. (2013)10.1103/PhysRevB.79.064301
/ Phys. Rev. B (2009)- J. Turney, Ph.D. thesis, Carnegie Mellon University, 2009. http://gradworks.umi.com/33/93/3393995.html.
10.1103/PhysRevLett.103.125902
/ Phys. Rev. Lett. (2009)10.1103/PhysRevB.81.081411
/ Phys. Rev. B (2010)10.1155/2014/206370
/ J. Nanomater. (2014)10.1063/1.4921108
/ J. Appl. Phys. (2015)10.1038/35090539
/ Nature (2001)10.1021/nl025875l
/ Nano Lett. (2003)10.1038/nmat2629
/ Nat. Mater. (2010)10.1038/nature06381
/ Nature (2008)10.1038/nature06458
/ Nature (2008)10.1103/PhysRevB.93.045202
/ Phys. Rev. B (2016)10.1103/PhysRevB.96.161201
/ Phys. Rev. B (2017)10.1016/j.scriptamat.2015.07.021
/ Scr. Mater. (2015)10.1073/pnas.1707745115
/ Proc. Natl. Acad. Sci. U.S.A. (2018)10.1103/PhysRevB.47.558
/ Phys. Rev. B (1993)10.1103/PhysRevLett.77.3865
/ Phys. Rev. Lett. (1996)10.1103/PhysRevLett.78.1396
/ Phys. Rev. Lett. (1997)10.1103/PhysRevB.59.1758
/ Phys. Rev. B (1999)10.1103/PhysRevB.29.2051
/ Phys. Rev. B (1984)10.1063/1.93394
/ Appl. Phys. Lett. (1982)10.1103/PhysRevB.94.125203
/ Phys. Rev. B (2016)10.1115/1.4024356
/ J. Heat Transfer. (2013)10.1063/1.5040887
/ Appl. Phys. Lett. (2018)10.1103/PhysRevB.94.174305
/ Phys. Rev. B (2016)10.1103/PhysRevB.71.205214
/ Phys. Rev. B Condens. Matter Mater. Phys. (2005)10.1103/PhysRevLett.99.015901
/ Phys. Rev. Lett. (2007)10.1103/PhysRevB.92.174113
/ Phys. Rev. B Condens. Matter Mater. Phys. (2015)10.1063/1.323747
/ J. Appl. Phys. (1977)10.1002/pssb.19690310224
/ Physica Status Solidi (1969)10.1080/14786436508224956
/ Philos. Mag. (1956)10.1016/j.scriptamat.2011.07.001
/ Scr. Mater. (2011)10.1103/PhysRevB.89.214103
/ Phys. Rev. B (2014)10.1088/0034-4885/79/6/066503
/ Rep. Prog. Phys. Phys. Soc. (Great Britain) (2016)10.1016/j.physleta.2016.04.021
/ Phys. Lett. A (2016)10.1109/JMEMS.2009.2039697
/ J. Microelectromech. Syst. (2010)10.1063/1.1663432
/ J. Appl. Phys. (1974)10.1063/1.333965
/ J. Appl. Phys. (1984)
Dates
Type | When |
---|---|
Created | 6 years, 10 months ago (Oct. 9, 2018, 12:14 p.m.) |
Deposited | 2 years, 2 months ago (June 24, 2023, 5:59 p.m.) |
Indexed | 2 days, 21 hours ago (Sept. 3, 2025, 6:55 a.m.) |
Issued | 6 years, 10 months ago (Oct. 9, 2018) |
Published | 6 years, 10 months ago (Oct. 9, 2018) |
Published Online | 6 years, 10 months ago (Oct. 9, 2018) |
Published Print | 6 years, 10 months ago (Oct. 14, 2018) |
Funders
1
Defense Advanced Research Projects Agency
10.13039/100000185
Region: Americas
gov (National government)
Labels
6
- U.S. Defense Advanced Research Projects Agency
- United States Defense Advanced Research Projects Agency
- The Defense Advanced Research Projects Agency
- Advanced Research Projects Agency
- DARPA
- ARPA
Awards
1
- HR0011-15-2-0037
@article{Feng_2018, title={Phonon anharmonic frequency shift induced by four-phonon scattering calculated from first principles}, volume={124}, ISSN={1089-7550}, url={http://dx.doi.org/10.1063/1.5048799}, DOI={10.1063/1.5048799}, number={14}, journal={Journal of Applied Physics}, publisher={AIP Publishing}, author={Feng, Tianli and Yang, Xiaolong and Ruan, Xiulin}, year={2018}, month=oct }