Crossref journal-article
AIP Publishing
The Journal of Chemical Physics (317)
Abstract

Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C20-fullerene that would have been infeasible with regular ab initio molecular dynamics.

Bibliography

Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A., & Müller, K.-R. (2018). SchNet – A deep learning architecture for molecules and materials. The Journal of Chemical Physics, 148(24).

Authors 5
  1. K. T. Schütt (first)
  2. H. E. Sauceda (additional)
  3. P.-J. Kindermans (additional)
  4. A. Tkatchenko (additional)
  5. K.-R. Müller (additional)
References 65 Referenced 1,546
  1. 10.1103/physrevlett.108.058301 / Phys. Rev. Lett. (2012)
  2. 10.1088/1367-2630/15/9/095003 / New J. Phys. (2013)
  3. 10.1021/ct400195d / J. Chem. Theory Comput. (2013)
  4. 10.1103/physrevb.89.205118 / Phys. Rev. B (2014)
  5. 10.1002/qua.24917 / Int. J. Quantum Chem. (2015)
  6. 10.1021/acs.jctc.5b00099 / J. Chem. Theory Comput. (2015)
  7. 10.1021/acs.jpclett.5b00831 / J. Phys. Chem. Lett. (2015)
  8. 10.1103/physrevlett.117.135502 / Phys. Rev. Lett. (2016)
  9. 10.1137/16m1075454 / Multiscale Model. Simul. (2017)
  10. 10.1021/acs.jctc.7b00577 / J. Chem. Theory Comput. (2017)
  11. H. Huo and M. Rupp, preprint arXiv:1704.06439 (2017).
  12. {'first-page': '6522', 'volume-title': 'Advances in Neural Information Processing Systems 30', 'year': '2017', 'key': '2023080301102866800_c12'} / Advances in Neural Information Processing Systems 30 (2017)
  13. 10.1038/ncomms15679 / Nat. Commun. (2017)
  14. K. Ryczko, K. Mills, I. Luchak, C. Homenick, and I. Tamblyn, preprint arXiv:1706.09496 (2017).
  15. I. Luchak, K. Mills, K. Ryczko, A. Domurad, and I. Tamblyn, preprint arXiv:1708.06686 (2017).
  16. 10.1103/physrevlett.98.146401 / Phys. Rev. Lett. (2007)
  17. 10.1063/1.3553717 / J. Chem. Phys. (2011)
  18. 10.1103/physrevlett.104.136403 / Phys. Rev. Lett. (2010)
  19. 10.1103/physrevb.87.184115 / Phys. Rev. B (2013)
  20. 10.1137/15m1054183 / Multiscale Model. Simul. (2016)
  21. 10.1126/sciadv.1603015 / Sci. Adv. (2017)
  22. 10.1038/s41467-017-00839-3 / Nat. Commun. (2017)
  23. 10.1039/c6sc05720a / Chem. Sci. (2017)
  24. 10.1016/j.commatsci.2017.08.031 / Comput. Mater. Sci. (2017)
  25. 10.1103/PhysRevB.97.054303 / Phys. Rev. B (2018)
  26. {'first-page': '2224', 'year': '2015', 'author': 'Cortes', 'key': '2023080301102866800_c26'} by Cortes (2015)
  27. 10.1007/s10822-016-9938-8 / J. Comput.-Aided Mol. Des. (2016)
  28. 10.1038/ncomms13890 / Nat. Commun. (2017)
  29. {'year': '2017', 'key': '2023080301102866800_c29', 'first-page': '1263'} (2017)
  30. {'first-page': '992', 'volume-title': 'Advances in Neural Information Processing Systems 30', 'year': '2017', 'key': '2023080301102866800_c30'} / Advances in Neural Information Processing Systems 30 (2017)
  31. {'key': '2023080301102866800_c31', 'first-page': '1803', 'volume': '11', 'year': '2010', 'journal-title': 'J. Mach. Learn. Res.'} / J. Mach. Learn. Res. (2010)
  32. K. Simonyan, A. Vedaldi, and A. Zisserman, eprint arXiv:1312.6034 (2013).
  33. 10.1371/journal.pone.0130140 / PLoS One (2015)
  34. {'key': '2023080301102866800_c34'}
  35. 10.1016/j.patcog.2016.11.008 / Pattern Recognit. (2017)
  36. P.-J. Kindermans, K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim, and S. Dähne, eprint arXiv:1705.05598 (2017).
  37. 10.1016/j.dsp.2017.10.011 / Digital Signal Process. (2018)
  38. {'year': '2015', 'key': '2023080301102866800_c38', 'first-page': '2048'} (2015)
  39. 10.1103/physrevlett.77.3865 / Phys. Rev. Lett. (1996)
  40. 10.1103/physrevlett.102.073005 / Phys. Rev. Lett. (2009)
  41. 10.1039/c5sc03443d / Chem. Sci. (2016)
  42. {'year': '2009', 'key': '2023080301102866800_c42', 'first-page': '1'} (2009)
  43. 10.1109/tasl.2012.2227738 / IEEE Trans. Audio, Speech, Lang. Process. (2013)
  44. {'year': '2013', 'key': '2023080301102866800_c44', 'first-page': '1642'} (2013)
  45. {'key': '2023080301102866800_c45', 'first-page': '667', 'volume-title': 'Advances in Neural Information Processing Systems 29', 'author': 'Lee', 'year': '2016'} / Advances in Neural Information Processing Systems 29 by Lee (2016)
  46. 10.1162/neco.1989.1.4.541 / Neural Comput. (1989)
  47. {'first-page': '1097', 'volume-title': 'Advances in Neural Information Processing Systems', 'year': '2012', 'key': '2023080301102866800_c47'} / Advances in Neural Information Processing Systems (2012)
  48. {'year': '2016', 'key': '2023080301102866800_c48'} (2016)
  49. {'year': '2017', 'key': '2023080301102866800_c49', 'first-page': '1251'} (2017)
  50. {'year': '2016', 'key': '2023080301102866800_c50', 'first-page': '770'} (2016)
  51. 10.1063/1.3095491 / J. Chem. Phys. (2009)
  52. {'key': '2023080301102866800_c52'}
  53. 10.1038/sdata.2014.22 / Sci. Data (2014)
  54. 10.1021/ja902302h / J. Am. Chem. Soc. (2009)
  55. 10.1021/ar500432k / Acc. Chem. Res. (2015)
  56. O. Vinyals, S. Bengio, and M. Kudlur, eprint arXiv:1511.06391 (2015).
  57. 10.1039/c7sc02267k / Chem. Sci. (2017)
  58. 10.1063/1.4812323 / APL Mater. (2013)
  59. 10.1016/j.commatsci.2012.10.028 / Comput. Mater. Sci. (2013)
  60. 10.1109/mcse.2011.35 / Comput. Sci. Eng. (2011)
  61. Code and trained models are available at: https://github.com/atomistic-machine-learning/SchNet.
  62. 10.1063/1.5006596 / J. Chem. Phys. (2018)
  63. 10.1016/j.cpc.2009.06.022 / Comput. Phys. Commun. (2009)
  64. 10.1016/j.cpc.2013.10.027 / Comput. Phys. Commun. (2014)
  65. 10.1063/1.3489925 / J. Chem. Phys. (2010)
Dates
Type When
Created 7 years, 4 months ago (March 29, 2018, 10:20 a.m.)
Deposited 2 years ago (Aug. 2, 2023, 9:10 p.m.)
Indexed 4 hours, 59 minutes ago (Aug. 21, 2025, 12:34 p.m.)
Issued 7 years, 4 months ago (March 29, 2018)
Published 7 years, 4 months ago (March 29, 2018)
Published Online 7 years, 4 months ago (March 29, 2018)
Published Print 7 years, 1 month ago (June 28, 2018)
Funders 6
  1. Deutsche Forschungsgemeinschaft 10.13039/501100001659

    Region: Europe

    gov (National government)

    Labels3
    1. German Research Association
    2. German Research Foundation
    3. DFG
    Awards1
    1. MU 987/20-1
  2. National Research Foundation of Korea 10.13039/501100003725

    Region: Asia

    pri (Trusts, charities, foundations (both public and private))

    Labels3
    1. 한국연구재단이 창의적 연구와
    2. National Research Foundation (South Korea)
    3. NRF
    Awards1
    1. 2012-005741
  3. Ministry of Science, ICT and Future Planning 10.13039/501100003621

    Region: Asia

    gov (National government)

    Labels1
    1. MSIP
    Awards1
    1. 2017-0-00451
  4. Bundesministerium für Bildung und Forschung 10.13039/501100002347

    Region: Europe

    gov (National government)

    Labels2
    1. Federal Ministry of Education and Research
    2. BMBF
    Awards1
    1. 01IS14013A
  5. H2020 European Research Council 10.13039/100010663

    Region: Europe

    gov (National government)

    Labels17
    1. H2020 Excellent Science - European Research Council
    2. European Research Council
    3. H2020 Wissenschaftsexzellenz - Für das Einzelziel 'Europäischer Forschungsrat (ERC)'
    4. H2020 Ciencia Excelente - Consejo Europeo de Investigación (CEI)
    5. H2020 Excellence Scientifique - Conseil européen de la recherche (CER)
    6. H2020 Eccellenza Scientifica - Consiglio europeo della ricerca (CER)
    7. H2020 Doskonała Baza Naukowa - Europejska Rada ds. Badań Naukowych (ERBN)
    8. EXCELLENT SCIENCE - European Research Council
    9. WISSENSCHAFTSEXZELLENZ - Für das Einzelziel 'Europäischer Forschungsrat
    10. CIENCIA EXCELENTE - Consejo Europeo de Investigación
    11. EXCELLENCE SCIENTIFIQUE - Conseil européen de la recherche
    12. ECCELLENZA SCIENTIFICA - Consiglio europeo della ricerca
    13. DOSKONAŁA BAZA NAUKOWA - Europejska Rada ds. Badań Naukowych
    14. ERC
    15. CEI
    16. CER
    17. ERBN
    Awards1
    1. BeStMo
  6. H2020 Marie Skłodowska-Curie Actions 10.13039/100010665

    Region: Europe

    gov (National government)

    Labels22
    1. H2020 Excellent Science - Marie Skłodowska-Curie Actions
    2. H2020 EXCELLENCE SCIENTIFIQUE - Actions Marie Skłodowska-Curie
    3. H2020 WISSENSCHAFTSEXZELLENZ- Marie Skłodowska-Curie Maßnahmen
    4. H2020 CIENCIA EXCELENTE - Acciones Marie Skłodowska-Curie
    5. H2020 ECCELLENZA SCIENTIFICA - Azioni Marie Skłodowska-Curie
    6. H2020 DOSKONAŁA BAZA NAUKOWA - Działania „Maria Skłodowska-Curie'
    7. Marie Skłodowska-Curie Actions
    8. Excellent Science: Marie Skłodowska-Curie Actions
    9. Actions Marie Skłodowska-Curie
    10. Marie-Skłodowska-Curie-Maßnahmen
    11. Acciones Marie Skłodowska-Curie
    12. Azioni Marie Skłodowska-Curie
    13. Działania „Maria Skłodowska-Curie'
    14. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
    15. EXCELLENCE SCIENTIFIQUE - Actions Marie Skłodowska-Curie
    16. WISSENSCHAFTSEXZELLENZ- Marie Skłodowska-Curie Maßnahmen
    17. CIENCIA EXCELENTE - Acciones Marie Skłodowska-Curie
    18. ECCELLENZA SCIENTIFICA - Azioni Marie Skłodowska-Curie
    19. DOSKONAŁA BAZA NAUKOWA - Działania „Maria Skłodowska-Curie'
    20. MSCA
    21. MSCM
    22. AMSC
    Awards1
    1. 657679

@article{Sch_tt_2018, title={SchNet – A deep learning architecture for molecules and materials}, volume={148}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.5019779}, DOI={10.1063/1.5019779}, number={24}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Schütt, K. T. and Sauceda, H. E. and Kindermans, P.-J. and Tkatchenko, A. and Müller, K.-R.}, year={2018}, month=mar }