Abstract
Classical intermolecular potentials typically require an extensive parametrization procedure for any new compound considered. To do away with prior parametrization, we propose a combination of physics-based potentials with machine learning (ML), coined IPML, which is transferable across small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions for environment-dependent local atomic properties: electrostatic multipole coefficients (significant error reduction compared to previously reported), the population and decay rate of valence atomic densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O atoms. These parameters enable accurate calculations of intermolecular contributions—electrostatics, charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other potentials, this model is transferable in its ability to handle new molecules and conformations without explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight global parameters—optimized once and for all across compounds. We validate IPML on various gas-phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between 0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded complexes—essential but challenging due to their directional nature—where datasets of DNA base pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look, we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the benzene crystal.
Authors
4
- Tristan Bereau (first)
- Robert A. DiStasio (additional)
- Alexandre Tkatchenko (additional)
- O. Anatole von Lilienfeld (additional)
References
72
Referenced
162
10.1021/ct500573f
/ J. Chem. Theory Comput. (2014)10.1021/acs.jctc.6b00913
/ J. Chem. Theory Comput. (2016)10.1021/cr00031a008
/ Chem. Rev. (1994)10.1021/acs.jctc.6b00209
/ J. Chem. Theory Comput. (2016)10.1021/acs.jctc.6b00969
/ J. Chem. Theory Comput. (2017)10.1021/acs.jctc.6b00027
/ J. Chem. Theory Comput. (2016)10.1103/physrevlett.104.136403
/ Phys. Rev. Lett. (2010)10.1103/physrevlett.114.096405
/ Phys. Rev. Lett. (2015)10.1063/1.4966192
/ J. Chem. Phys. (2016)10.1126/sciadv.1603015
/ Sci. Adv. (2017)10.1021/acs.jpcc.6b10908
/ J. Phys. Chem. C (2016)10.1038/ncomms13890
/ Nat. Commun. (2017)10.1039/c4cp04751f
/ Phys. Chem. Chem. Phys. (2015)10.1103/physrevlett.108.058301
/ Phys. Rev. Lett. (2012)10.1021/ct400195d
/ J. Chem. Theory Comput. (2013)10.1002/9781119356059.ch5
/ Reviews in Computational Chemistry / Machine learning, quantum chemistry, and chemical space (2017)10.1021/acs.jctc.5b00056
/ J. Chem. Theory Comput. (2015)10.1021/acs.jctc.5b00301
/ J. Chem. Theory Comput. (2015){'volume-title': 'The Theory of Intermolecular Forces', 'year': '2013', 'key': '2023080221480181000_c19'}
/ The Theory of Intermolecular Forces (2013)10.1039/b600027d
/ Phys. Chem. Chem. Phys. (2006)10.1007/s00214-007-0310-x
/ Theor. Chem. Acc. (2008)10.1021/ct5008444
/ J. Chem. Theory Comput. (2014)- T. Verstraelen, P. Tecmer, F. Heidar-Zadeh, K. Boguslawski, M. Chan, Y. Zhao, T. D. Kim, S. Vandenbrande, D. Yang, C. E. González-Espinoza, S. Fias, P. A. Limacher, D. Berrocal, A. Malek, and P. W. Ayers, HORTON, version 2.0.1, http://theochem.github.com/horton/, accessed 01 Augest 2016.
10.1063/1.4964627
/ J. Chem. Phys. (2016)- B. Huang and O. A. von Lilienfeld, preprint arXiv:1707.04146 (2017).
- A. S. Christensen, F. A. Faber, B. Huang, L. A. Bratholm, A. Tkatchenko, K. R. Müller, and O. A. von Lilienfeld, QML: A Python Toolkit for Quantum Machine Learning, https://github.com/qmlcode/qml, accessed 01 July 2017.
10.1016/0009-2614(81)85080-4
/ Chem. Phys. Lett. (1981)10.1039/b812691g
/ Chem. Commun. (2008)10.1021/acs.jctc.6b00456
/ J. Chem. Theory Comput. (2016)10.1007/bf00549096
/ Theor. Chim. Acta (1977)10.1103/physrevlett.102.073005
/ Phys. Rev. Lett. (2009)10.1063/1.4885339
/ J. Chem. Phys. (2014)10.1063/1.4890003
/ J. Chem. Phys. (2014)- V. V. Gobre, “Efficient modelling of linear electronic polarization in materials using atomic response functions,” Ph.D. thesis, Technische Universität Berlin, 2016.
10.1063/1.478522
/ J. Chem. Phys. (1999)10.1021/ct900699r
/ J. Chem. Theory Comput. (2010)10.1063/1.4789421
/ J. Chem. Phys. (2013)10.1021/jp027815+
/ J. Phys. Chem. B (2003)10.1021/ct400803f
/ J. Chem. Theory Comput. (2013)10.1021/ct1003862
/ J. Chem. Theory Comput. (2010)10.1021/jp035748t
/ J. Phys. Chem. A (2003)10.1021/acs.jctc.5b00267
/ J. Chem. Theory Comput. (2015)10.1002/jcc.24257
/ J. Comput. Chem. (2016)10.1039/c6cp06017j
/ Phys. Chem. Chem. Phys. (2017)10.1016/0301-0104(81)85176-2
/ Chem. Phys. (1981)10.1021/acs.chemrev.6b00446
/ Chem. Rev. (2017)10.1103/physrevlett.108.236402
/ Phys. Rev. Lett. (2012)10.1063/1.2337283
/ J. Chem. Phys. (2006)10.1109/mcse.2011.37
/ Comput. Sci. Eng. (2011)10.1186/1758-2946-3-33
/ J. Cheminf. (2011)10.1021/acs.jctc.7b00577
/ J. Chem. Theory Comput. (2017)10.1103/physrevb.95.214302
/ Phys. Rev. B (2017)-
A. Grisafi, D. M. Wilkins, G. Csányi, and M. Ceriotti, Phys. Rev. Lett. 120(3), 036002 (2018).10.1103/PhysRevLett.120.036002
(
10.1103/PhysRevLett.120.036002
) 10.1088/0953-8984/26/21/213202
/ J. Phys.: Condens. Matter (2014)10.1021/jp970984n
/ J. Phys. Chem. A (1997){'volume-title': 'Energy Landscapes: Applications to Clusters, Biomolecules and Glasses', 'year': '2003', 'key': '2023080221480181000_c56'}
/ Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (2003)10.1021/ct1002253
/ J. Chem. Theory Comput. (2010)10.1021/jz402663k
/ J. Phys. Chem. Lett. (2014)10.1021/ct200523a
/ J. Chem. Theory Comput. (2011)10.1063/1.5001028
/ J. Chem. Phys. (2017)10.1021/jp2069489
/ J. Phys. Chem. A (2011)10.1021/ct0502357
/ J. Chem. Theory Comput. (2006)10.1021/ct700049s
/ J. Chem. Theory Comput. (2007)10.1063/1.3432765
/ J. Chem. Phys. (2010)10.1063/1.470984
/ J. Chem. Phys. (1996)10.1021/acs.jcim.7b00090
/ J. Chem. Inf. Model. (2017)10.1039/c5sc03234b
/ Chem. Sci. (2016)10.1021/jp910674d
/ J. Phys. Chem. B (2010){'volume-title': 'Gaussian Processes for Machine Learning', 'year': '2006', 'key': '2023080221480181000_c69'}
/ Gaussian Processes for Machine Learning (2006)10.1021/acs.jctc.7b00851
/ J. Chem. Theory Comput. (2018)10.1063/1.1779576
/ J. Chem. Phys. (2004)10.1063/1.4865104
/ J. Chem. Phys. (2014)
Dates
Type | When |
---|---|
Created | 7 years, 5 months ago (March 15, 2018, 11:34 a.m.) |
Deposited | 2 years ago (Aug. 2, 2023, 5:48 p.m.) |
Indexed | 2 weeks, 2 days ago (Aug. 6, 2025, 9:03 a.m.) |
Issued | 7 years, 5 months ago (March 15, 2018) |
Published | 7 years, 5 months ago (March 15, 2018) |
Published Online | 7 years, 5 months ago (March 15, 2018) |
Published Print | 7 years, 1 month ago (June 28, 2018) |
Funders
4
National Science Foundation
10.13039/100000001
Region: Americas
gov (National government)
Labels
4
- U.S. National Science Foundation
- NSF
- US NSF
- USA NSF
Awards
1
- DMR-1719875
Deutsche Forschungsgemeinschaft
10.13039/501100001659
Region: Europe
gov (National government)
Labels
3
- German Research Association
- German Research Foundation
- DFG
Awards
1
- Emmy Noether
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
10.13039/501100001711
Region: Europe
pri (Trusts, charities, foundations (both public and private))
Labels
10
- Schweizerischer Nationalfonds
- Swiss National Science Foundation
- Fonds National Suisse de la Recherche Scientifique
- Fondo Nazionale Svizzero per la Ricerca Scientifica
- Fonds National Suisse
- Fondo Nazionale Svizzero
- Schweizerische Nationalfonds
- SNF
- SNSF
- FNS
Awards
2
- PP00P2 138932
- 407540 167186 NFP 75 Big Data
H2020 European Research Council
10.13039/100010663
Region: Europe
gov (National government)
Labels
17
- H2020 Excellent Science - European Research Council
- European Research Council
- H2020 Wissenschaftsexzellenz - Für das Einzelziel 'Europäischer Forschungsrat (ERC)'
- H2020 Ciencia Excelente - Consejo Europeo de Investigación (CEI)
- H2020 Excellence Scientifique - Conseil européen de la recherche (CER)
- H2020 Eccellenza Scientifica - Consiglio europeo della ricerca (CER)
- H2020 Doskonała Baza Naukowa - Europejska Rada ds. Badań Naukowych (ERBN)
- EXCELLENT SCIENCE - European Research Council
- WISSENSCHAFTSEXZELLENZ - Für das Einzelziel 'Europäischer Forschungsrat
- CIENCIA EXCELENTE - Consejo Europeo de Investigación
- EXCELLENCE SCIENTIFIQUE - Conseil européen de la recherche
- ECCELLENZA SCIENTIFICA - Consiglio europeo della ricerca
- DOSKONAŁA BAZA NAUKOWA - Europejska Rada ds. Badań Naukowych
- ERC
- CEI
- CER
- ERBN
Awards
1
- BeStMo
@article{Bereau_2018, title={Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning}, volume={148}, ISSN={1089-7690}, url={http://dx.doi.org/10.1063/1.5009502}, DOI={10.1063/1.5009502}, number={24}, journal={The Journal of Chemical Physics}, publisher={AIP Publishing}, author={Bereau, Tristan and DiStasio, Robert A. and Tkatchenko, Alexandre and von Lilienfeld, O. Anatole}, year={2018}, month=mar }