Abstract
Extensible quantum computing architectures require a large array of quantum bits operating with low error rates. A quantum processor based on superconducting devices can be scaled up by stacking microchips that perform wiring, shielding, and computational functionalities. In this article, we demonstrate a vacuum thermocompression bonding technology that utilizes thin indium films as a welding agent to attach pairs of lithographically patterned chips. At 10 mK, we find a specific dc bond resistance of 49.2 μΩ cm2. We show good transmission up to 6.8 GHz in a tunnel-capped, bonded device as compared to a similar uncapped device. Finally, we fabricate and measure a set of tunnel-capped superconducting resonators, demonstrating that our bonding technology can be used in quantum computing applications.
References
27
Referenced
7
10.1038/nature08812
/ Nature / Quantum computers (2010)10.1103/PhysRevLett.106.130506
/ Phys. Rev. Lett. / 14-qubit entanglement: Creation and coherence (2011)10.1038/nature14270
/ Nature / State preservation by repetitive error detection in a superconducting quantum circuit (2015)10.1038/npjqi.2015.5
/ NPJ Quantum Inf. / Qubit metrology for building a fault-tolerant quantum computer (2015)10.1103/PhysRevX.2.031007
/ Phys. Rev. X / Layered architecture for quantum computing (2012)10.1126/science.1231298
/ Science / Scaling the ion trap quantum processor (2013)10.1038/npjqi.2015.19
/ NPJ Quantum Inf. / A silicon-based surface code quantum computer (2016)10.1126/sciadv.1601540
/ Science Advances / Blueprint for a microwave trapped ion quantum computer (2017)10.1038/nature07128
/ Nature / Superconducting quantum bits (2008)-
S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing quantum supremacy in near-term devices,” preprint arXiv:1608.00263 (2017).
(
10.1038/s41567-018-0124-x
) 10.1090/psapm/068
/ Proc. Symp. Appl. Math. / An introduction to quantum error correction and fault-tolerant quantum computation (2010)10.1103/PhysRevA.86.032324
/ Phys. Rev. A / Surface codes: Towards practical large-scale quantum computation (2012)10.1038/ncomms7979
/ Nat. Commun. / Demonstration of a quantum error detection code using a square lattice of four superconducting qubits (2015)10.1038/ncomms7983
/ Nat. Commun. / Detecting bit-flip errors in a logical qubit using stabilizer measurements (2015)10.1038/nature18949
/ Nature / Extending the lifetime of a quantum bit with error correction in superconducting circuits (2016)10.1103/PhysRevApplied.6.044010
/ Phys. Rev. Appl. / Three-dimensional wiring for extensible quantum computing: The quantum socket (2016)10.1038/npjqi.2016.2
/ NPJ Quantum Inf. / Multilayer microwave integrated quantum circuits for scalable quantum computing (2016)10.1063/1.4935541
/ Appl. Phys. Lett. / Demonstration of superconducting micromachined cavities (2015)10.1103/PhysRevApplied.7.044018
/ Phys. Rev. Appl. / Micromachined integrated quantum circuit containing a superconducting qubit (2017)- W. O'Brien, M. Vahidpour, J. T. Whyland, J. Angeles, D. Scarabelli, G. Crossman, K. Yadav, Y. Mohan, C. Bui, V. Rawat, R. Renzas, N. Vodrahalli, A. Bestwick, and C. Rigetti, “Superconducting caps for quantum integrated circuits,” preprint arXiv:1708.02219 (2017).
-
D. Rosenberg, D. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz, A. Melville, L. Racz, G. O. Samach, S. J. Weber, F. Yan, J. Yoder, A. J. Kerman, and W. D. Oliver, “3D integrated superconducting qubits,” preprint arXiv:1706.04116 (2017).
(
10.1038/s41534-017-0044-0
) -
B. Foxen, J. Y. Mutus, E. Lucero, R. Graff, A. Megrant, Y. Chen, C. Quintana, B. Burkett, J. Kelly, E. Jeffrey, Y. Yang, A. Yu, K. Arya, R. Barends, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, C. Gidney, M. Giustina, T. Huang, P. Klimov, M. Neeley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, and J. M. Martinis, “Qubit compatible superconducting interconnects,” preprint arXiv:1708.04270 (2017).
(
10.1088/2058-9565/aa94fc
) -
R. Versluis, S. Poletto, N. Khammassi, N. Haider, D. J. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, “Scalable quantum circuit and control for a superconducting surface code,” preprint arXiv:1612.08208 (2016).
(
10.1103/PhysRevApplied.8.034021
) {'key': '2023061719444688000_c24'}
- See http://www.ansys.com/Products/Electronics/ANSYS-Q3D-Extractor for details on the software, which makes it possible to extract lumped element parameters (e.g., resistance) from quasi-static electromagnetic field simulations.
10.1088/0953-2048/24/6/065001
/ Supercond. Sci. Technol. / Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits (2011)10.1063/1.4818710
/ Appl. Phys. Lett. / Fluctuations from edge defects in superconducting resonators (2013)
Dates
Type | When |
---|---|
Created | 7 years, 11 months ago (Sept. 18, 2017, 9:59 a.m.) |
Deposited | 2 years, 2 months ago (June 17, 2023, 3:44 p.m.) |
Indexed | 3 weeks, 1 day ago (July 30, 2025, 7:10 a.m.) |
Issued | 7 years, 11 months ago (Sept. 18, 2017) |
Published | 7 years, 11 months ago (Sept. 18, 2017) |
Published Online | 7 years, 11 months ago (Sept. 18, 2017) |
Published Print | 7 years, 11 months ago (Sept. 18, 2017) |
Funders
1
Natural Sciences and Engineering Research Council of Canada
10.13039/501100000038
Region: Americas
gov (National government)
Labels
3
- Conseil de Recherches en Sciences Naturelles et en Génie du Canada
- NSERC
- CRSNG
Awards
1
- RGPIN 1505
@article{McRae_2017, title={Thermocompression bonding technology for multilayer superconducting quantum circuits}, volume={111}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.5003169}, DOI={10.1063/1.5003169}, number={12}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={McRae, C. R. H. and Béjanin, J. H. and Pagel, Z. and Abdallah, A. O. and McConkey, T. G. and Earnest, C. T. and Rinehart, J. R. and Mariantoni, M.}, year={2017}, month=sep }