Crossref journal-article
AIP Publishing
Applied Physics Letters (317)
Abstract

Extensible quantum computing architectures require a large array of quantum bits operating with low error rates. A quantum processor based on superconducting devices can be scaled up by stacking microchips that perform wiring, shielding, and computational functionalities. In this article, we demonstrate a vacuum thermocompression bonding technology that utilizes thin indium films as a welding agent to attach pairs of lithographically patterned chips. At 10 mK, we find a specific dc bond resistance of 49.2 μΩ cm2. We show good transmission up to 6.8 GHz in a tunnel-capped, bonded device as compared to a similar uncapped device. Finally, we fabricate and measure a set of tunnel-capped superconducting resonators, demonstrating that our bonding technology can be used in quantum computing applications.

Bibliography

McRae, C. R. H., Béjanin, J. H., Pagel, Z., Abdallah, A. O., McConkey, T. G., Earnest, C. T., Rinehart, J. R., & Mariantoni, M. (2017). Thermocompression bonding technology for multilayer superconducting quantum circuits. Applied Physics Letters, 111(12).

Authors 8
  1. C. R. H. McRae (first)
  2. J. H. Béjanin (additional)
  3. Z. Pagel (additional)
  4. A. O. Abdallah (additional)
  5. T. G. McConkey (additional)
  6. C. T. Earnest (additional)
  7. J. R. Rinehart (additional)
  8. M. Mariantoni (additional)
References 27 Referenced 7
  1. 10.1038/nature08812 / Nature / Quantum computers (2010)
  2. 10.1103/PhysRevLett.106.130506 / Phys. Rev. Lett. / 14-qubit entanglement: Creation and coherence (2011)
  3. 10.1038/nature14270 / Nature / State preservation by repetitive error detection in a superconducting quantum circuit (2015)
  4. 10.1038/npjqi.2015.5 / NPJ Quantum Inf. / Qubit metrology for building a fault-tolerant quantum computer (2015)
  5. 10.1103/PhysRevX.2.031007 / Phys. Rev. X / Layered architecture for quantum computing (2012)
  6. 10.1126/science.1231298 / Science / Scaling the ion trap quantum processor (2013)
  7. 10.1038/npjqi.2015.19 / NPJ Quantum Inf. / A silicon-based surface code quantum computer (2016)
  8. 10.1126/sciadv.1601540 / Science Advances / Blueprint for a microwave trapped ion quantum computer (2017)
  9. 10.1038/nature07128 / Nature / Superconducting quantum bits (2008)
  10. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing quantum supremacy in near-term devices,” preprint arXiv:1608.00263 (2017). (10.1038/s41567-018-0124-x)
  11. 10.1090/psapm/068 / Proc. Symp. Appl. Math. / An introduction to quantum error correction and fault-tolerant quantum computation (2010)
  12. 10.1103/PhysRevA.86.032324 / Phys. Rev. A / Surface codes: Towards practical large-scale quantum computation (2012)
  13. 10.1038/ncomms7979 / Nat. Commun. / Demonstration of a quantum error detection code using a square lattice of four superconducting qubits (2015)
  14. 10.1038/ncomms7983 / Nat. Commun. / Detecting bit-flip errors in a logical qubit using stabilizer measurements (2015)
  15. 10.1038/nature18949 / Nature / Extending the lifetime of a quantum bit with error correction in superconducting circuits (2016)
  16. 10.1103/PhysRevApplied.6.044010 / Phys. Rev. Appl. / Three-dimensional wiring for extensible quantum computing: The quantum socket (2016)
  17. 10.1038/npjqi.2016.2 / NPJ Quantum Inf. / Multilayer microwave integrated quantum circuits for scalable quantum computing (2016)
  18. 10.1063/1.4935541 / Appl. Phys. Lett. / Demonstration of superconducting micromachined cavities (2015)
  19. 10.1103/PhysRevApplied.7.044018 / Phys. Rev. Appl. / Micromachined integrated quantum circuit containing a superconducting qubit (2017)
  20. W. O'Brien, M. Vahidpour, J. T. Whyland, J. Angeles, D. Scarabelli, G. Crossman, K. Yadav, Y. Mohan, C. Bui, V. Rawat, R. Renzas, N. Vodrahalli, A. Bestwick, and C. Rigetti, “Superconducting caps for quantum integrated circuits,” preprint arXiv:1708.02219 (2017).
  21. D. Rosenberg, D. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz, A. Melville, L. Racz, G. O. Samach, S. J. Weber, F. Yan, J. Yoder, A. J. Kerman, and W. D. Oliver, “3D integrated superconducting qubits,” preprint arXiv:1706.04116 (2017). (10.1038/s41534-017-0044-0)
  22. B. Foxen, J. Y. Mutus, E. Lucero, R. Graff, A. Megrant, Y. Chen, C. Quintana, B. Burkett, J. Kelly, E. Jeffrey, Y. Yang, A. Yu, K. Arya, R. Barends, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, C. Gidney, M. Giustina, T. Huang, P. Klimov, M. Neeley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, and J. M. Martinis, “Qubit compatible superconducting interconnects,” preprint arXiv:1708.04270 (2017). (10.1088/2058-9565/aa94fc)
  23. R. Versluis, S. Poletto, N. Khammassi, N. Haider, D. J. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, “Scalable quantum circuit and control for a superconducting surface code,” preprint arXiv:1612.08208 (2016). (10.1103/PhysRevApplied.8.034021)
  24. {'key': '2023061719444688000_c24'}
  25. See http://www.ansys.com/Products/Electronics/ANSYS-Q3D-Extractor for details on the software, which makes it possible to extract lumped element parameters (e.g., resistance) from quasi-static electromagnetic field simulations.
  26. 10.1088/0953-2048/24/6/065001 / Supercond. Sci. Technol. / Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits (2011)
  27. 10.1063/1.4818710 / Appl. Phys. Lett. / Fluctuations from edge defects in superconducting resonators (2013)
Dates
Type When
Created 7 years, 11 months ago (Sept. 18, 2017, 9:59 a.m.)
Deposited 2 years, 2 months ago (June 17, 2023, 3:44 p.m.)
Indexed 3 weeks, 1 day ago (July 30, 2025, 7:10 a.m.)
Issued 7 years, 11 months ago (Sept. 18, 2017)
Published 7 years, 11 months ago (Sept. 18, 2017)
Published Online 7 years, 11 months ago (Sept. 18, 2017)
Published Print 7 years, 11 months ago (Sept. 18, 2017)
Funders 1
  1. Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038

    Region: Americas

    gov (National government)

    Labels3
    1. Conseil de Recherches en Sciences Naturelles et en Génie du Canada
    2. NSERC
    3. CRSNG
    Awards1
    1. RGPIN 1505

@article{McRae_2017, title={Thermocompression bonding technology for multilayer superconducting quantum circuits}, volume={111}, ISSN={1077-3118}, url={http://dx.doi.org/10.1063/1.5003169}, DOI={10.1063/1.5003169}, number={12}, journal={Applied Physics Letters}, publisher={AIP Publishing}, author={McRae, C. R. H. and Béjanin, J. H. and Pagel, Z. and Abdallah, A. O. and McConkey, T. G. and Earnest, C. T. and Rinehart, J. R. and Mariantoni, M.}, year={2017}, month=sep }